1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/*
* Runtime CPU detection
* (C) 2009-2010,2013 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/cpuid.h>
#include <botan/types.h>
#include <botan/get_byte.h>
#include <botan/mem_ops.h>
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
#if defined(BOTAN_TARGET_OS_IS_DARWIN)
#include <sys/sysctl.h>
#endif
#if defined(BOTAN_TARGET_OS_IS_OPENBSD)
#include <sys/param.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
#endif
#endif
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
#if defined(BOTAN_BUILD_COMPILER_IS_MSVC)
#include <intrin.h>
#define X86_CPUID(type, out) do { __cpuid((int*)out, type); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) do { __cpuidex((int*)out, type, level); } while(0)
#elif defined(BOTAN_BUILD_COMPILER_IS_INTEL)
#include <ia32intrin.h>
#define X86_CPUID(type, out) do { __cpuid(out, type); } while(0)
#elif defined(BOTAN_BUILD_COMPILER_IS_GCC)
#include <cpuid.h>
#define X86_CPUID(type, out) do { __get_cpuid(type, out, out+1, out+2, out+3); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) \
do { __cpuid_count(type, level, out[0], out[1], out[2], out[3]); } while(0)
#elif defined(BOTAN_TARGET_ARCH_IS_X86_64) && BOTAN_USE_GCC_INLINE_ASM
#define X86_CPUID(type, out) \
asm("cpuid\n\t" : "=a" (out[0]), "=b" (out[1]), "=c" (out[2]), "=d" (out[3]) \
: "0" (type))
#define X86_CPUID_SUBLEVEL(type, level, out) \
asm("cpuid\n\t" : "=a" (out[0]), "=b" (out[1]), "=c" (out[2]), "=d" (out[3]) \
: "0" (type), "2" (level))
#else
#warning "No way of doing cpuid with this compiler"
#define X86_CPUID(type, out) do { clear_mem(out, 4); } while(0)
#define X86_CPUID_SUBLEVEL(type, level, out) do { clear_mem(out, 4); } while(0)
#endif
#endif
namespace Botan {
u64bit CPUID::m_x86_processor_flags[2] = { 0, 0 };
size_t CPUID::m_cache_line_size = 0;
bool CPUID::m_altivec_capable = false;
namespace {
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
bool altivec_check_sysctl()
{
#if defined(BOTAN_TARGET_OS_IS_DARWIN) || defined(BOTAN_TARGET_OS_IS_OPENBSD)
#if defined(BOTAN_TARGET_OS_IS_OPENBSD)
int sels[2] = { CTL_MACHDEP, CPU_ALTIVEC };
#else
// From Apple's docs
int sels[2] = { CTL_HW, HW_VECTORUNIT };
#endif
int vector_type = 0;
size_t length = sizeof(vector_type);
int error = sysctl(sels, 2, &vector_type, &length, NULL, 0);
if(error == 0 && vector_type > 0)
return true;
#endif
return false;
}
bool altivec_check_pvr_emul()
{
bool altivec_capable = false;
#if defined(BOTAN_TARGET_OS_IS_LINUX) || defined(BOTAN_TARGET_OS_IS_NETBSD)
/*
On PowerPC, MSR 287 is PVR, the Processor Version Number
Normally it is only accessible to ring 0, but Linux and NetBSD
(others, too, maybe?) will trap and emulate it for us.
PVR identifiers for various AltiVec enabled CPUs. Taken from
PearPC and Linux sources, mostly.
*/
const u16bit PVR_G4_7400 = 0x000C;
const u16bit PVR_G5_970 = 0x0039;
const u16bit PVR_G5_970FX = 0x003C;
const u16bit PVR_G5_970MP = 0x0044;
const u16bit PVR_G5_970GX = 0x0045;
const u16bit PVR_POWER6 = 0x003E;
const u16bit PVR_POWER7 = 0x003F;
const u16bit PVR_CELL_PPU = 0x0070;
// Motorola produced G4s with PVR 0x800[0123C] (at least)
const u16bit PVR_G4_74xx_24 = 0x800;
u32bit pvr = 0;
asm volatile("mfspr %0, 287" : "=r" (pvr));
// Top 16 bit suffice to identify model
pvr >>= 16;
altivec_capable |= (pvr == PVR_G4_7400);
altivec_capable |= ((pvr >> 4) == PVR_G4_74xx_24);
altivec_capable |= (pvr == PVR_G5_970);
altivec_capable |= (pvr == PVR_G5_970FX);
altivec_capable |= (pvr == PVR_G5_970MP);
altivec_capable |= (pvr == PVR_G5_970GX);
altivec_capable |= (pvr == PVR_POWER6);
altivec_capable |= (pvr == PVR_POWER7);
altivec_capable |= (pvr == PVR_CELL_PPU);
#endif
return altivec_capable;
}
#endif
}
void CPUID::initialize()
{
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
if(altivec_check_sysctl() || altivec_check_pvr_emul())
altivec_capable = true;
#endif
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
const u32bit INTEL_CPUID[3] = { 0x756E6547, 0x6C65746E, 0x49656E69 };
const u32bit AMD_CPUID[3] = { 0x68747541, 0x444D4163, 0x69746E65 };
u32bit cpuid[4] = { 0 };
X86_CPUID(0, cpuid);
const u32bit max_supported_sublevel = cpuid[0];
if(max_supported_sublevel == 0)
return;
const bool is_intel = same_mem(cpuid + 1, INTEL_CPUID, 3);
const bool is_amd = same_mem(cpuid + 1, AMD_CPUID, 3);
X86_CPUID(1, cpuid);
m_x86_processor_flags[0] = (static_cast<u64bit>(cpuid[2]) << 32) | cpuid[3];
if(is_intel)
m_cache_line_size = 8 * get_byte(2, cpuid[1]);
if(max_supported_sublevel >= 7)
{
clear_mem(cpuid, 4);
X86_CPUID_SUBLEVEL(7, 0, cpuid);
m_x86_processor_flags[1] = (static_cast<u64bit>(cpuid[2]) << 32) | cpuid[1];
}
if(is_amd)
{
X86_CPUID(0x80000005, cpuid);
m_cache_line_size = get_byte(3, cpuid[2]);
}
#endif
#if defined(BOTAN_TARGET_ARCH_IS_X86_64)
/*
* If we don't have access to CPUID, we can still safely assume that
* any x86-64 processor has SSE2 and RDTSC
*/
if(m_x86_processor_flags[0] == 0)
m_x86_processor_flags[0] = (1 << CPUID_SSE2_BIT) | (1 << CPUID_RDTSC_BIT);
#endif
}
}
|