1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
/*
* Byte Swapping Operations
* (C) 1999-2008 Jack Lloyd
* (C) 2007 Yves Jerschow
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_BYTE_SWAP_H__
#define BOTAN_BYTE_SWAP_H__
#include <botan/types.h>
#include <botan/rotate.h>
#if defined(BOTAN_TARGET_CPU_HAS_SSE2)
#include <emmintrin.h>
#endif
namespace Botan {
/**
* Swap a 16 bit integer
*/
inline u16bit reverse_bytes(u16bit input)
{
return rotate_left(input, 8);
}
/**
* Swap a 32 bit integer
*/
inline u32bit reverse_bytes(u32bit input)
{
#if BOTAN_GCC_VERSION >= 420
// GCC intrinsic added in 4.3, works for a number of CPUs
return __builtin_bswap32(input);
#elif BOTAN_USE_GCC_INLINE_ASM && defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
// GCC-style inline assembly for x86 or x86-64
asm("bswapl %0" : "=r" (input) : "0" (input));
return input;
#elif defined(_MSC_VER) && defined(BOTAN_TARGET_ARCH_IS_IA32)
// Visual C++ inline asm for 32-bit x86, by Yves Jerschow
__asm mov eax, input;
__asm bswap eax;
#else
// Generic implementation
return (rotate_right(input, 8) & 0xFF00FF00) |
(rotate_left (input, 8) & 0x00FF00FF);
#endif
}
/**
* Swap a 64 bit integer
*/
inline u64bit reverse_bytes(u64bit input)
{
#if BOTAN_GCC_VERSION >= 430
// GCC intrinsic added in 4.3, works for a number of CPUs
return __builtin_bswap64(input);
#elif BOTAN_USE_GCC_INLINE_ASM && defined(BOTAN_TARGET_ARCH_IS_AMD64)
// GCC-style inline assembly for x86-64
asm("bswapq %0" : "=r" (input) : "0" (input));
return input;
#else
/* Generic implementation. Defined in terms of 32-bit bswap so any
* optimizations in that version can help here (particularly
* useful for 32-bit x86).
*/
u32bit hi = static_cast<u32bit>(input >> 32);
u32bit lo = static_cast<u32bit>(input);
hi = reverse_bytes(hi);
lo = reverse_bytes(lo);
return (static_cast<u64bit>(lo) << 32) | hi;
#endif
}
/**
* Swap 4 Ts in an array
*/
template<typename T>
inline void bswap_4(T x[4])
{
x[0] = reverse_bytes(x[0]);
x[1] = reverse_bytes(x[1]);
x[2] = reverse_bytes(x[2]);
x[3] = reverse_bytes(x[3]);
}
#if defined(BOTAN_TARGET_CPU_HAS_SSE2)
/**
* Swap 4 u32bits in an array using SSE2 shuffle instructions
*/
template<>
inline void bswap_4(u32bit x[4])
{
__m128i T = _mm_loadu_si128(reinterpret_cast<const __m128i*>(x));
T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
T = _mm_or_si128(_mm_srli_epi16(T, 8), _mm_slli_epi16(T, 8));
_mm_storeu_si128(reinterpret_cast<__m128i*>(x), T);
}
#endif
}
#endif
|