1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*************************************************
* Turing Source File *
* (C) 1999-2006 The Botan Project *
*************************************************/
#include <botan/turing.h>
#include <botan/bit_ops.h>
namespace Botan {
namespace {
/*************************************************
* Perform an N-way PHT *
*************************************************/
inline void PHT(MemoryRegion<u32bit>& buf)
{
u32bit sum = 0;
for(u32bit j = 0; j < buf.size() - 1; ++j)
sum += buf[j];
buf[buf.size()-1] += sum;
sum = buf[buf.size()-1];
for(u32bit j = 0; j < buf.size() - 1; ++j)
buf[j] += sum;
}
/*************************************************
* Turing's polynomial multiplication *
*************************************************/
inline u32bit mul(u32bit X)
{
static const u32bit MULT_TAB[256] = {
0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9, 0x97AC41D1, 0x478702B6,
0x7AFAC71F, 0xAAD18478, 0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746,
0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697, 0xC62A4993, 0x16010AF4,
0x2B7CCF5D, 0xFB578C3A, 0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB,
0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5, 0x32938AAD, 0xE2B8C9CA,
0xDFC50C63, 0x0FEE4F04, 0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2,
0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613, 0xA2411084, 0x726A53E3,
0x4F17964A, 0x9F3CD52D, 0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC,
0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51, 0x90D29A29, 0x40F9D94E,
0x7D841CE7, 0xADAF5F80, 0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE,
0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F, 0xCFA869D6, 0x1F832AB1,
0x22FEEF18, 0xF2D5AC7F, 0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE,
0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90, 0x3B11AAE8, 0xEB3AE98F,
0xD6472C26, 0x066C6F41, 0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC,
0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D, 0x6A97A2AA, 0xBABCE1CD,
0x87C12464, 0x57EA6703, 0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2,
0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14, 0x9950BA6C, 0x497BF90B,
0x74063CA2, 0xA42D7FC5, 0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB,
0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A, 0xC8D6B22E, 0x18FDF149,
0x258034E0, 0xF5AB7787, 0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656,
0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568, 0x3C6F7110, 0xEC443277,
0xD139F7DE, 0x0112B4B9, 0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748,
0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699, 0xB008500E, 0x60231369,
0x5D5ED6C0, 0x8D7595A7, 0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476,
0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB, 0x829BDAA3, 0x52B099C4,
0x6FCD5C6D, 0xBFE61F0A, 0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34,
0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5, 0x1249408A, 0xC26203ED,
0xFF1FC644, 0x2F348523, 0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2,
0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC, 0xE6F083B4, 0x36DBC0D3,
0x0BA6057A, 0xDB8D461D, 0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0,
0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61, 0xB7768BF6, 0x675DC891,
0x5A200D38, 0x8A0B4E5F, 0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E,
0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E, 0x8B19FAE6, 0x5B32B981,
0x664F7C28, 0xB6643F4F, 0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71,
0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0, 0xDA9FF2A4, 0x0AB4B1C3,
0x37C9746A, 0xE7E2370D, 0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC,
0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2, 0x2E26319A, 0xFE0D72FD,
0xC370B754, 0x135BF433, 0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5,
0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24, 0xBEF4ABB3, 0x6EDFE8D4,
0x53A22D7D, 0x83896E1A, 0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB,
0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566, 0x8C67211E, 0x5C4C6279,
0x6131A7D0, 0xB11AE4B7, 0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658 };
return (X << 8) ^ MULT_TAB[(X >> 24) & 0xFF];
}
}
/*************************************************
* Combine cipher stream with message *
*************************************************/
void Turing::cipher(const byte in[], byte out[], u32bit length)
{
while(length >= buffer.size() - position)
{
xor_buf(out, in, buffer.begin() + position, buffer.size() - position);
length -= (buffer.size() - position);
in += (buffer.size() - position);
out += (buffer.size() - position);
generate();
}
xor_buf(out, in, buffer.begin() + position, length);
position += length;
}
/*************************************************
* Generate cipher stream *
*************************************************/
void Turing::generate()
{
for(u32bit j = 0; j != 17; ++j)
{
const u32bit offset_0 = OFFSETS[16*j];
const u32bit offset_1 = OFFSETS[16*j+1];
const u32bit offset_2 = OFFSETS[16*j+2];
const u32bit offset_3 = OFFSETS[16*j+3];
const u32bit offset_4 = OFFSETS[16*j+4];
const u32bit offset_5 = OFFSETS[16*j+5];
const u32bit offset_6 = OFFSETS[16*j+6];
const u32bit offset_7 = OFFSETS[16*j+7];
const u32bit offset_8 = OFFSETS[16*j+8];
const u32bit offset_12 = OFFSETS[16*j+9];
const u32bit offset_14 = OFFSETS[16*j+10];
const u32bit offset_15 = OFFSETS[16*j+11];
const u32bit offset_16 = OFFSETS[16*j+12];
R[offset_0] = mul(R[offset_0]) ^ R[offset_15] ^ R[offset_4];
u32bit A = R[offset_0];
u32bit B = R[offset_14];
u32bit C = R[offset_7];
u32bit D = R[offset_2];
u32bit E = R[offset_1];
E += A + B + C + D;
A += E; B += E; C += E; D += E;
A = S0[get_byte(0, A)] ^ S1[get_byte(1, A)] ^
S2[get_byte(2, A)] ^ S3[get_byte(3, A)];
B = S0[get_byte(1, B)] ^ S1[get_byte(2, B)] ^
S2[get_byte(3, B)] ^ S3[get_byte(0, B)];
C = S0[get_byte(2, C)] ^ S1[get_byte(3, C)] ^
S2[get_byte(0, C)] ^ S3[get_byte(1, C)];
D = S0[get_byte(3, D)] ^ S1[get_byte(0, D)] ^
S2[get_byte(1, D)] ^ S3[get_byte(2, D)];
E = S0[get_byte(0, E)] ^ S1[get_byte(1, E)] ^
S2[get_byte(2, E)] ^ S3[get_byte(3, E)];
E += A + B + C + D;
A += E; B += E; C += E; D += E;
R[offset_1] = mul(R[offset_1]) ^ R[offset_16] ^ R[offset_5];
R[offset_2] = mul(R[offset_2]) ^ R[offset_0] ^ R[offset_6];
R[offset_3] = mul(R[offset_3]) ^ R[offset_1] ^ R[offset_7];
E += R[offset_4];
R[offset_4] = mul(R[offset_4]) ^ R[offset_2] ^ R[offset_8];
A += R[offset_1];
B += R[offset_16];
C += R[offset_12];
D += R[offset_5];
for(u32bit k = 0; k != 4; ++k)
{
buffer[20*j+k ] = get_byte(k, A);
buffer[20*j+k+ 4] = get_byte(k, B);
buffer[20*j+k+ 8] = get_byte(k, C);
buffer[20*j+k+12] = get_byte(k, D);
buffer[20*j+k+16] = get_byte(k, E);
}
}
position = 0;
}
/*************************************************
*
*************************************************/
u32bit Turing::fixedS(u32bit W)
{
for(u32bit j = 0; j != 4; ++j)
{
byte B = SBOX[get_byte(j, W)];
W ^= rotate_left(Q_BOX[B], j*8);
W &= rotate_right(0x00FFFFFF, j*8);
W |= B << (24-j*8);
}
return W;
}
/*************************************************
* Generate the expanded Turing Sbox tables *
*************************************************/
void Turing::gen_sbox(MemoryRegion<u32bit>& S, u32bit which,
const MemoryRegion<u32bit>& K)
{
for(u32bit j = 0; j != 256; ++j)
{
u32bit W = 0, C = j;
for(u32bit k = 0; k < K.size(); ++k)
{
C = SBOX[get_byte(which, K[k]) ^ C];
W ^= rotate_left(Q_BOX[C], k + 8*which);
}
S[j] = (W & rotate_right(0x00FFFFFF, 8*which)) | (C << (24 - 8*which));
}
}
/*************************************************
* Turing Key Schedule *
*************************************************/
void Turing::key(const byte key[], u32bit length)
{
K.create(length / 4);
for(u32bit j = 0; j != length; ++j)
K[j/4] = (K[j/4] << 8) + key[j];
for(u32bit j = 0; j != K.size(); ++j)
K[j] = fixedS(K[j]);
PHT(K);
gen_sbox(S0, 0, K);
gen_sbox(S1, 1, K);
gen_sbox(S2, 2, K);
gen_sbox(S3, 3, K);
resync(0, 0);
}
/*************************************************
* Resynchronization *
*************************************************/
void Turing::resync(const byte iv[], u32bit length)
{
if(length % 4 != 0 || length > 16)
throw Invalid_IV_Length(name(), length);
SecureVector<u32bit> IV(length / 4);
for(u32bit j = 0; j != length; ++j)
IV[j/4] = (IV[j/4] << 8) + iv[j];
for(u32bit j = 0; j != IV.size(); ++j)
R[j] = IV[j] = fixedS(IV[j]);
for(u32bit j = 0; j != K.size(); ++j)
R[j+IV.size()] = K[j];
R[K.size() + IV.size()] = (0x010203 << 8) | (K.size() << 4) | IV.size();
for(u32bit j = K.size() + IV.size() + 1; j != 17; ++j)
{
const u32bit W = R[j-K.size()-IV.size()-1] + R[j-1];
R[j] = S0[get_byte(0, W)] ^ S1[get_byte(1, W)] ^
S2[get_byte(2, W)] ^ S3[get_byte(3, W)];
}
PHT(R);
generate();
}
/*************************************************
* Clear memory of sensitive data *
*************************************************/
void Turing::clear() throw()
{
S0.clear();
S1.clear();
S2.clear();
S3.clear();
buffer.clear();
position = 0;
}
}
|