aboutsummaryrefslogtreecommitdiffstats
path: root/src/tls/tls_policy.cpp
blob: f0ad89a6a60fce21856b98f7f35a073e1bff4dd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
* Policies for TLS
* (C) 2004-2010,2012 Jack Lloyd
*
* Released under the terms of the Botan license
*/

#include <botan/tls_policy.h>
#include <botan/tls_ciphersuite.h>
#include <botan/tls_magic.h>
#include <botan/tls_exceptn.h>
#include <botan/internal/stl_util.h>

namespace Botan {

namespace TLS {

std::vector<std::string> Policy::allowed_ciphers() const
   {
   std::vector<std::string> allowed;

   allowed.push_back("AES-256");
   allowed.push_back("AES-128");
   allowed.push_back("3DES");
   allowed.push_back("ARC4");
   // Note that SEED and IDEA are not included by default

   return allowed;
   }

std::vector<std::string> Policy::allowed_hashes() const
   {
   std::vector<std::string> allowed;

   allowed.push_back("SHA-512");
   allowed.push_back("SHA-384");
   allowed.push_back("SHA-256");
   allowed.push_back("SHA-224");
   allowed.push_back("SHA-1");
   // Note that MD5 is not included by default

   return allowed;
   }

std::vector<std::string> Policy::allowed_key_exchange_methods() const
   {
   std::vector<std::string> allowed;

   //allowed.push_back("SRP");
   //allowed.push_back("ECDHE_PSK");
   //allowed.push_back("DHE_PSK");
   //allowed.push_back("PSK");
   allowed.push_back("ECDH");
   allowed.push_back("DH");
   allowed.push_back("RSA"); // RSA via server cert

   return allowed;
   }

std::vector<std::string> Policy::allowed_signature_methods() const
   {
   std::vector<std::string> allowed;

   allowed.push_back("ECDSA");
   allowed.push_back("RSA");
   allowed.push_back("DSA");
   allowed.push_back("");

   return allowed;
   }

std::vector<std::string> Policy::allowed_ecc_curves() const
   {
   std::vector<std::string> curves;
   curves.push_back("secp521r1");
   curves.push_back("secp384r1");
   curves.push_back("secp256r1");
   curves.push_back("secp256k1");
   curves.push_back("secp224r1");
   curves.push_back("secp224k1");
   curves.push_back("secp192r1");
   curves.push_back("secp192k1");
   curves.push_back("secp160r2");
   curves.push_back("secp160r1");
   curves.push_back("secp160k1");
   return curves;
   }

namespace {

class Ciphersuite_Preference_Ordering
   {
   public:
      Ciphersuite_Preference_Ordering(const std::vector<std::string>& ciphers,
                                      const std::vector<std::string>& hashes,
                                      const std::vector<std::string>& kex,
                                      const std::vector<std::string>& sigs) :
         m_ciphers(ciphers), m_hashes(hashes), m_kex(kex), m_sigs(sigs) {}

      bool operator()(const Ciphersuite& a, const Ciphersuite& b) const
         {
         if(a.kex_algo() != b.kex_algo())
            {
            for(size_t i = 0; i != m_kex.size(); ++i)
               {
               if(a.kex_algo() == m_kex[i])
                  return true;
               if(b.kex_algo() == m_kex[i])
                  return false;
               }
            }

         if(a.cipher_algo() != b.cipher_algo())
            {
            for(size_t i = 0; i != m_ciphers.size(); ++i)
               {
               if(a.cipher_algo() == m_ciphers[i])
                  return true;
               if(b.cipher_algo() == m_ciphers[i])
                  return false;
               }
            }

         if(a.sig_algo() != b.sig_algo())
            {
            for(size_t i = 0; i != m_sigs.size(); ++i)
               {
               if(a.sig_algo() == m_sigs[i])
                  return true;
               if(b.sig_algo() == m_sigs[i])
                  return false;
               }
            }

         if(a.mac_algo() != b.mac_algo())
            {
            for(size_t i = 0; i != m_hashes.size(); ++i)
               {
               if(a.mac_algo() == m_hashes[i])
                  return true;
               if(b.mac_algo() == m_hashes[i])
                  return false;
               }
            }

         return false; // equal (?!?)
         }
   private:
      std::vector<std::string> m_ciphers, m_hashes, m_kex, m_sigs;

   };

}

std::vector<u16bit> Policy::ciphersuite_list(bool have_srp) const
   {
   std::vector<std::string> ciphers = allowed_ciphers();
   std::vector<std::string> hashes = allowed_hashes();
   std::vector<std::string> kex = allowed_key_exchange_methods();
   std::vector<std::string> sigs = allowed_signature_methods();

   if(!have_srp)
      {
      std::vector<std::string>::iterator i =
         std::find(kex.begin(), kex.end(), "SRP");

      if(i != kex.end())
         kex.erase(i);
      }

   Ciphersuite_Preference_Ordering order(ciphers, hashes, kex, sigs);

   std::map<Ciphersuite, u16bit, Ciphersuite_Preference_Ordering>
      ciphersuites(order);

   // When in doubt use brute force :)
   for(u32bit i = 0; i != 65536; ++i)
      {
      Ciphersuite suite = Ciphersuite::lookup_ciphersuite(i);

      if(!suite.valid())
         continue; // not a ciphersuite we know, skip

      if(value_exists(ciphers, suite.cipher_algo()) &&
         value_exists(hashes, suite.mac_algo()) &&
         value_exists(kex, suite.kex_algo()) &&
         value_exists(sigs, suite.sig_algo()))
         {
         ciphersuites[suite] = i;
         }
      }

   std::vector<u16bit> ciphersuite_codes;

   for(std::map<Ciphersuite, u16bit, Ciphersuite_Preference_Ordering>::iterator i = ciphersuites.begin();
       i != ciphersuites.end(); ++i)
      {
      ciphersuite_codes.push_back(i->second);
      }

   return ciphersuite_codes;
   }

/*
* Return allowed compression algorithms
*/
std::vector<byte> Policy::compression() const
   {
   std::vector<byte> algs;
   algs.push_back(NO_COMPRESSION);
   return algs;
   }

/*
* Choose an ECC curve to use
*/
std::string Policy::choose_curve(const std::vector<std::string>& curve_names) const
   {
   std::vector<std::string> our_curves = allowed_ecc_curves();

   for(size_t i = 0; i != our_curves.size(); ++i)
      if(value_exists(curve_names, our_curves[i]))
         return our_curves[i];

   return ""; // no shared curve
   }

/*
* Choose which ciphersuite to use
*/
u16bit Policy::choose_suite(const std::vector<u16bit>& client_suites,
                            const std::vector<std::string>& available_cert_types,
                            bool have_shared_ecc_curve,
                            bool have_srp) const
   {
   std::vector<u16bit> ciphersuites = ciphersuite_list(have_srp);

   for(size_t i = 0; i != ciphersuites.size(); ++i)
      {
      const u16bit suite_id = ciphersuites[i];
      Ciphersuite suite = Ciphersuite::lookup_ciphersuite(suite_id);

      if(!have_shared_ecc_curve)
         {
         if(suite.kex_algo() == "ECDH" || suite.sig_algo() == "ECDSA")
            continue;
         }

      if(suite.sig_algo() != "" &&
         !value_exists(available_cert_types, suite.sig_algo()))
         {
         continue;
         }

      if(value_exists(client_suites, suite_id))
         return suite_id;
      }

   return 0; // no shared cipersuite
   }

/*
* Choose which compression algorithm to use
*/
byte Policy::choose_compression(const std::vector<byte>& c_comp) const
   {
   std::vector<byte> s_comp = compression();

   for(size_t i = 0; i != s_comp.size(); ++i)
      for(size_t j = 0; j != c_comp.size(); ++j)
         if(s_comp[i] == c_comp[j])
            return s_comp[i];

   return NO_COMPRESSION;
   }

}

}