1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/*
* TLS Handshake IO
* (C) 2012 Jack Lloyd
*
* Released under the terms of the Botan license
*/
#include <botan/internal/tls_handshake_io.h>
#include <botan/internal/tls_messages.h>
#include <botan/tls_record.h>
#include <botan/exceptn.h>
namespace Botan {
namespace TLS {
namespace {
inline size_t load_be24(const byte q[3])
{
return make_u32bit(0,
q[0],
q[1],
q[2]);
}
void store_be24(byte out[3], size_t val)
{
out[0] = get_byte<u32bit>(1, val);
out[1] = get_byte<u32bit>(2, val);
out[2] = get_byte<u32bit>(3, val);
}
}
Protocol_Version Stream_Handshake_IO::initial_record_version() const
{
return Protocol_Version::SSL_V3;
}
void Stream_Handshake_IO::add_input(const byte rec_type,
const byte record[],
size_t record_size,
u64bit /*record_number*/)
{
if(rec_type == HANDSHAKE)
{
m_queue.insert(m_queue.end(), record, record + record_size);
}
else if(rec_type == CHANGE_CIPHER_SPEC)
{
if(record_size != 1 || record[0] != 1)
throw Decoding_Error("Invalid ChangeCipherSpec");
// Pretend it's a regular handshake message of zero length
const byte ccs_hs[] = { HANDSHAKE_CCS, 0, 0, 0 };
m_queue.insert(m_queue.end(), ccs_hs, ccs_hs + sizeof(ccs_hs));
}
else
throw Decoding_Error("Unknown message type in handshake processing");
}
std::pair<Handshake_Type, std::vector<byte>>
Stream_Handshake_IO::get_next_record(bool)
{
if(m_queue.size() >= 4)
{
const size_t length = load_be24(&m_queue[1]);
if(m_queue.size() >= length + 4)
{
Handshake_Type type = static_cast<Handshake_Type>(m_queue[0]);
std::vector<byte> contents(m_queue.begin() + 4,
m_queue.begin() + 4 + length);
m_queue.erase(m_queue.begin(), m_queue.begin() + 4 + length);
return std::make_pair(type, contents);
}
}
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
}
std::vector<byte>
Stream_Handshake_IO::format(const std::vector<byte>& msg,
Handshake_Type type) const
{
std::vector<byte> send_buf(4 + msg.size());
const size_t buf_size = msg.size();
send_buf[0] = type;
store_be24(&send_buf[1], buf_size);
copy_mem(&send_buf[4], &msg[0], msg.size());
return send_buf;
}
std::vector<byte> Stream_Handshake_IO::send(Handshake_Message& msg)
{
const std::vector<byte> buf = format(msg.serialize(), msg.type());
m_writer.send(HANDSHAKE, &buf[0], buf.size());
return buf;
}
Protocol_Version Datagram_Handshake_IO::initial_record_version() const
{
return Protocol_Version::DTLS_V10;
}
void Datagram_Handshake_IO::add_input(const byte rec_type,
const byte record[],
size_t record_size,
u64bit record_number)
{
const u16bit epoch = static_cast<u16bit>(record_number >> 48);
if(rec_type == CHANGE_CIPHER_SPEC)
{
m_ccs_epochs.insert(epoch);
return;
}
const size_t DTLS_HANDSHAKE_HEADER_LEN = 12;
while(record_size)
{
if(record_size < DTLS_HANDSHAKE_HEADER_LEN)
return; // completely bogus? at least degenerate/weird
const byte msg_type = record[0];
const size_t msg_len = load_be24(&record[1]);
const u16bit message_seq = load_be<u16bit>(&record[4], 0);
const size_t fragment_offset = load_be24(&record[6]);
const size_t fragment_length = load_be24(&record[9]);
const size_t total_size = DTLS_HANDSHAKE_HEADER_LEN + fragment_length;
if(record_size < total_size)
throw Decoding_Error("Bad lengths in DTLS header");
if(message_seq >= m_in_message_seq)
{
m_messages[message_seq].add_fragment(&record[DTLS_HANDSHAKE_HEADER_LEN],
fragment_length,
fragment_offset,
epoch,
msg_type,
msg_len);
}
record += total_size;
record_size -= total_size;
}
}
std::pair<Handshake_Type, std::vector<byte>>
Datagram_Handshake_IO::get_next_record(bool expecting_ccs)
{
if(expecting_ccs)
{
if(!m_messages.empty())
{
const u16bit current_epoch = m_messages.begin()->second.epoch();
if(m_ccs_epochs.count(current_epoch))
return std::make_pair(HANDSHAKE_CCS, std::vector<byte>());
}
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
}
auto i = m_messages.find(m_in_message_seq);
if(i == m_messages.end() || !i->second.complete())
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
m_in_message_seq += 1;
return i->second.message();
}
void Datagram_Handshake_IO::Handshake_Reassembly::add_fragment(
const byte fragment[],
size_t fragment_length,
size_t fragment_offset,
u16bit epoch,
byte msg_type,
size_t msg_length)
{
if(complete())
return; // already have entire message, ignore this
if(m_msg_type == HANDSHAKE_NONE)
{
m_epoch = epoch;
m_msg_type = msg_type;
m_msg_length = msg_length;
}
if(msg_type != m_msg_type || msg_length != m_msg_length || epoch != m_epoch)
throw Decoding_Error("Inconsistent values in DTLS handshake header");
if(fragment_offset > m_msg_length)
throw Decoding_Error("Fragment offset past end of message");
if(fragment_offset + fragment_length > m_msg_length)
throw Decoding_Error("Fragment overlaps past end of message");
if(fragment_offset == 0 && fragment_length == m_msg_length)
{
m_fragments.clear();
m_message.assign(fragment, fragment+fragment_length);
}
else
{
/*
* FIXME. This is a pretty lame way to do defragmentation, huge
* overhead with a tree node per byte.
*/
for(size_t i = 0; i != fragment_length; ++i)
m_fragments[fragment_offset+i] = fragment[i];
if(m_fragments.size() == m_msg_length)
{
m_message.resize(m_msg_length);
for(size_t i = 0; i != m_msg_length; ++i)
m_message[i] = m_fragments[i];
m_fragments.clear();
}
}
}
bool Datagram_Handshake_IO::Handshake_Reassembly::complete() const
{
return (m_msg_type != HANDSHAKE_NONE && m_message.size() == m_msg_length);
}
std::pair<Handshake_Type, std::vector<byte>>
Datagram_Handshake_IO::Handshake_Reassembly::message() const
{
if(!complete())
throw Internal_Error("Datagram_Handshake_IO - message not complete");
return std::make_pair(static_cast<Handshake_Type>(m_msg_type), m_message);
}
std::vector<byte>
Datagram_Handshake_IO::format_w_seq(const std::vector<byte>& msg,
Handshake_Type type,
u16bit msg_sequence) const
{
std::vector<byte> send_buf(12 + msg.size());
const size_t buf_size = msg.size();
send_buf[0] = type;
store_be24(&send_buf[1], buf_size);
store_be(msg_sequence, &send_buf[4]);
store_be24(&send_buf[6], 0); // fragment_offset
store_be24(&send_buf[9], buf_size); // fragment_length
copy_mem(&send_buf[12], &msg[0], msg.size());
return send_buf;
}
std::vector<byte>
Datagram_Handshake_IO::format(const std::vector<byte>& msg,
Handshake_Type type) const
{
return format_w_seq(msg, type, m_in_message_seq - 1);
}
std::vector<byte>
Datagram_Handshake_IO::send(Handshake_Message& handshake_msg)
{
const std::vector<byte> msg = handshake_msg.serialize();
const std::vector<byte> no_fragment =
format_w_seq(msg, handshake_msg.type(), m_out_message_seq);
// FIXME: fragment to mtu size if needed
m_writer.send(HANDSHAKE, &no_fragment[0], no_fragment.size());
m_out_message_seq += 1;
return no_fragment;
}
}
}
|