1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/*
* TLS Channels
* (C) 2011-2012 Jack Lloyd
*
* Released under the terms of the Botan license
*/
#include <botan/tls_channel.h>
#include <botan/internal/tls_handshake_state.h>
#include <botan/internal/tls_messages.h>
#include <botan/internal/tls_heartbeats.h>
#include <botan/internal/assert.h>
#include <botan/loadstor.h>
namespace Botan {
namespace TLS {
Channel::Channel(std::function<void (const byte[], size_t)> socket_output_fn,
std::function<void (const byte[], size_t, Alert)> proc_fn,
std::function<bool (const Session&)> handshake_complete,
Session_Manager& session_manager,
RandomNumberGenerator& rng) :
m_proc_fn(proc_fn),
m_handshake_fn(handshake_complete),
m_state(nullptr),
m_session_manager(session_manager),
m_writer(socket_output_fn, rng),
m_handshake_completed(false),
m_connection_closed(false),
m_peer_supports_heartbeats(false),
m_heartbeat_sending_allowed(false)
{
}
Channel::~Channel()
{
}
size_t Channel::received_data(const byte buf[], size_t buf_size)
{
try
{
while(buf_size)
{
byte rec_type = CONNECTION_CLOSED;
std::vector<byte> record;
size_t consumed = 0;
const size_t needed = m_reader.add_input(buf, buf_size,
consumed,
rec_type, record);
BOTAN_ASSERT(consumed <= buf_size,
"Record reader consumed sane amount");
buf += consumed;
buf_size -= consumed;
BOTAN_ASSERT(buf_size == 0 || needed == 0,
"Got a full record or consumed all input");
if(buf_size == 0 && needed != 0)
return needed; // need more data to complete record
if(rec_type == HANDSHAKE || rec_type == CHANGE_CIPHER_SPEC)
{
if(!m_state)
m_state.reset(new_handshake_state());
m_state->handshake_io().add_input(rec_type, &record[0], record.size());
while(m_state && m_state->handshake_io().have_full_record())
{
std::pair<Handshake_Type, std::vector<byte> > msg =
m_state->handshake_io().get_next_record();
process_handshake_msg(msg.first, msg.second);
}
}
else if(rec_type == HEARTBEAT && m_peer_supports_heartbeats)
{
Heartbeat_Message heartbeat(record);
const std::vector<byte>& payload = heartbeat.payload();
if(heartbeat.is_request() && !m_state)
{
Heartbeat_Message response(Heartbeat_Message::RESPONSE,
&payload[0], payload.size());
m_writer.send(HEARTBEAT, response.contents());
}
else
{
// pass up to the application
m_proc_fn(&payload[0], payload.size(), Alert(Alert::HEARTBEAT_PAYLOAD));
}
}
else if(rec_type == APPLICATION_DATA)
{
if(m_handshake_completed)
{
/*
* OpenSSL among others sends empty records in versions
* before TLS v1.1 in order to randomize the IV of the
* following record. Avoid spurious callbacks.
*/
if(record.size() > 0)
m_proc_fn(&record[0], record.size(), Alert());
}
else
{
throw Unexpected_Message("Application data before handshake done");
}
}
else if(rec_type == ALERT)
{
Alert alert_msg(record);
alert_notify(alert_msg);
m_proc_fn(nullptr, 0, alert_msg);
if(alert_msg.type() == Alert::CLOSE_NOTIFY)
{
if(m_connection_closed)
m_reader.reset();
else
send_alert(Alert(Alert::CLOSE_NOTIFY)); // reply in kind
}
else if(alert_msg.is_fatal())
{
// delete state immediately
if(!m_active_session.empty())
{
m_session_manager.remove_entry(m_active_session);
m_active_session.clear();
}
m_connection_closed = true;
m_state.reset();
m_writer.reset();
m_reader.reset();
}
}
else
throw Unexpected_Message("Unknown TLS message type " +
std::to_string(rec_type) + " received");
}
return 0; // on a record boundary
}
catch(TLS_Exception& e)
{
send_alert(Alert(e.type(), true));
throw;
}
catch(Decoding_Error& e)
{
send_alert(Alert(Alert::DECODE_ERROR, true));
throw;
}
catch(Internal_Error& e)
{
send_alert(Alert(Alert::INTERNAL_ERROR, true));
throw;
}
catch(std::exception& e)
{
send_alert(Alert(Alert::INTERNAL_ERROR, true));
throw;
}
}
void Channel::heartbeat(const byte payload[], size_t payload_size)
{
if(!is_active())
throw std::runtime_error("Heartbeat cannot be sent on inactive TLS connection");
if(m_heartbeat_sending_allowed)
{
Heartbeat_Message heartbeat(Heartbeat_Message::REQUEST,
payload, payload_size);
m_writer.send(HEARTBEAT, heartbeat.contents());
}
}
void Channel::send(const byte buf[], size_t buf_size)
{
if(!is_active())
throw std::runtime_error("Data cannot be sent on inactive TLS connection");
m_writer.send(APPLICATION_DATA, buf, buf_size);
}
void Channel::send(const std::string& string)
{
this->send(reinterpret_cast<const byte*>(string.c_str()), string.size());
}
void Channel::send_alert(const Alert& alert)
{
if(alert.is_valid() && !m_connection_closed)
{
try
{
m_writer.send_alert(alert);
}
catch(...) { /* swallow it */ }
}
if(alert.is_fatal() && !m_active_session.empty())
{
m_session_manager.remove_entry(m_active_session);
m_active_session.clear();
}
if(!m_connection_closed && (alert.type() == Alert::CLOSE_NOTIFY || alert.is_fatal()))
{
m_connection_closed = true;
m_state.reset();
m_writer.reset();
}
}
void Channel::Secure_Renegotiation_State::update(const Client_Hello* client_hello)
{
if(initial_handshake())
{
m_secure_renegotiation = client_hello->secure_renegotiation();
}
else
{
if(supported() && !client_hello->secure_renegotiation())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Client changed its mind about secure renegotiation");
}
if(client_hello->secure_renegotiation())
{
const std::vector<byte>& data = client_hello->renegotiation_info();
if(initial_handshake())
{
if(!data.empty())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Client sent renegotiation data on initial handshake");
}
else
{
if(data != for_client_hello())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Client sent bad renegotiation data");
}
}
}
void Channel::Secure_Renegotiation_State::update(const Server_Hello* server_hello)
{
if(initial_handshake())
{
/* If the client offered but server rejected, then this toggles
* secure_renegotiation to off
*/
if(m_secure_renegotiation)
m_secure_renegotiation = server_hello->secure_renegotiation();
}
else
{
if(supported() != server_hello->secure_renegotiation())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Server changed its mind about secure renegotiation");
}
if(supported())
{
const std::vector<byte>& data = server_hello->renegotiation_info();
if(initial_handshake())
{
if(!data.empty())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Server sent renegotiation data on initial handshake");
}
else
{
if(data != for_server_hello())
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Server sent bad renegotiation data");
}
}
m_initial_handshake = false;
}
void Channel::Secure_Renegotiation_State::update(const Finished* client_finished,
const Finished* server_finished)
{
m_client_verify = client_finished->verify_data();
m_server_verify = server_finished->verify_data();
}
}
}
|