1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* ECDSA Tests
*
* (C) 2007 Falko Strenzke
* 2007 Manuel Hartl
* 2008 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "tests.h"
#if defined(BOTAN_HAS_ECDSA)
#include <botan/hex.h>
#include <botan/pubkey.h>
#include <botan/ecdsa.h>
#include <botan/rsa.h>
#if defined(BOTAN_HAS_X509_CERTIFICATES)
#include <botan/x509cert.h>
#endif
#include <botan/oids.h>
#include <iostream>
#include <fstream>
#include <memory>
using namespace Botan;
#define ECC_TEST_DATA_DIR TEST_DATA_DIR "/ecc"
#define CHECK_MESSAGE(expr, print) try { if(!(expr)) { ++fails; std::cout << print << "\n"; } } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
#define CHECK(expr) try { if(!(expr)) { ++fails; std::cout << #expr << "\n"; } } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
namespace {
std::string to_hex(const std::vector<byte>& bin)
{
return hex_encode(&bin[0], bin.size());
}
/**
* Tests whether the the signing routine will work correctly in case
* the integer e that is constructed from the message (thus the hash
* value) is larger than n, the order of the base point. Tests the
* signing function of the pk signer object */
size_t test_hash_larger_than_n(RandomNumberGenerator& rng)
{
EC_Group dom_pars(OID("1.3.132.0.8")); // secp160r1
// n = 0x0100000000000000000001f4c8f927aed3ca752257 (21 bytes)
// -> shouldn't work with SHA224 which outputs 28 bytes
size_t fails = 0;
ECDSA_PrivateKey priv_key(rng, dom_pars);
std::vector<byte> message(20);
for(size_t i = 0; i != message.size(); ++i)
message[i] = i;
PK_Signer pk_signer_160(priv_key, "EMSA1_BSI(SHA-1)");
PK_Verifier pk_verifier_160(priv_key, "EMSA1_BSI(SHA-1)");
PK_Signer pk_signer_224(priv_key, "EMSA1_BSI(SHA-224)");
// Verify we can sign and verify with SHA-160
std::vector<byte> signature_160 = pk_signer_160.sign_message(message, rng);
CHECK(pk_verifier_160.verify_message(message, signature_160));
bool signature_failed = false;
try
{
std::vector<byte> signature_224 = pk_signer_224.sign_message(message, rng);
}
catch(Encoding_Error)
{
signature_failed = true;
}
CHECK(signature_failed);
// now check that verification alone fails
// sign it with the normal EMSA1
PK_Signer pk_signer(priv_key, "EMSA1(SHA-224)");
std::vector<byte> signature = pk_signer.sign_message(message, rng);
PK_Verifier pk_verifier(priv_key, "EMSA1_BSI(SHA-224)");
// verify against EMSA1_BSI
if(pk_verifier.verify_message(message, signature))
{
std::cout << "Corrupt ECDSA signature verified, should not have\n";
++fails;
}
return fails;
}
#if defined(BOTAN_HAS_X509_CERTIFICATES)
size_t test_decode_ecdsa_X509()
{
X509_Certificate cert(ECC_TEST_DATA_DIR "/CSCA.CSCA.csca-germany.1.crt");
size_t fails = 0;
CHECK_MESSAGE(OIDS::lookup(cert.signature_algorithm().oid) == "ECDSA/EMSA1(SHA-224)", "error reading signature algorithm from x509 ecdsa certificate");
CHECK_MESSAGE(to_hex(cert.serial_number()) == "01", "error reading serial from x509 ecdsa certificate");
CHECK_MESSAGE(to_hex(cert.authority_key_id()) == "0096452DE588F966C4CCDF161DD1F3F5341B71E7", "error reading authority key id from x509 ecdsa certificate");
CHECK_MESSAGE(to_hex(cert.subject_key_id()) == "0096452DE588F966C4CCDF161DD1F3F5341B71E7", "error reading Subject key id from x509 ecdsa certificate");
std::unique_ptr<X509_PublicKey> pubkey(cert.subject_public_key());
bool ver_ec = cert.check_signature(*pubkey);
CHECK_MESSAGE(ver_ec, "could not positively verify correct selfsigned x509-ecdsa certificate");
return fails;
}
size_t test_decode_ver_link_SHA256()
{
X509_Certificate root_cert(ECC_TEST_DATA_DIR "/root2_SHA256.cer");
X509_Certificate link_cert(ECC_TEST_DATA_DIR "/link_SHA256.cer");
size_t fails = 0;
std::unique_ptr<X509_PublicKey> pubkey(root_cert.subject_public_key());
bool ver_ec = link_cert.check_signature(*pubkey);
CHECK_MESSAGE(ver_ec, "could not positively verify correct SHA256 link x509-ecdsa certificate");
return fails;
}
size_t test_decode_ver_link_SHA1()
{
X509_Certificate root_cert(ECC_TEST_DATA_DIR "/root_SHA1.163.crt");
X509_Certificate link_cert(ECC_TEST_DATA_DIR "/link_SHA1.166.crt");
size_t fails = 0;
std::unique_ptr<X509_PublicKey> pubkey(root_cert.subject_public_key());
bool ver_ec = link_cert.check_signature(*pubkey);
CHECK_MESSAGE(ver_ec, "could not positively verify correct SHA1 link x509-ecdsa certificate");
return fails;
}
#endif
size_t test_sign_then_ver(RandomNumberGenerator& rng)
{
EC_Group dom_pars(OID("1.3.132.0.8"));
ECDSA_PrivateKey ecdsa(rng, dom_pars);
size_t fails = 0;
PK_Signer signer(ecdsa, "EMSA1(SHA-1)");
auto msg = hex_decode("12345678901234567890abcdef12");
std::vector<byte> sig = signer.sign_message(msg, rng);
PK_Verifier verifier(ecdsa, "EMSA1(SHA-1)");
bool ok = verifier.verify_message(msg, sig);
if(!ok)
{
std::cout << "ERROR: Could not verify ECDSA signature\n";
fails++;
}
sig[0]++;
ok = verifier.verify_message(msg, sig);
if(ok)
{
std::cout << "ERROR: Bogus ECDSA signature verified anyway\n";
fails++;
}
return fails;
}
size_t test_ec_sign(RandomNumberGenerator& rng)
{
size_t fails = 0;
try
{
EC_Group dom_pars(OID("1.3.132.0.8"));
ECDSA_PrivateKey priv_key(rng, dom_pars);
std::string pem_encoded_key = PKCS8::PEM_encode(priv_key);
PK_Signer signer(priv_key, "EMSA1(SHA-224)");
PK_Verifier verifier(priv_key, "EMSA1(SHA-224)");
for(size_t i = 0; i != 256; ++i)
signer.update(static_cast<byte>(i));
std::vector<byte> sig = signer.signature(rng);
for(u32bit i = 0; i != 256; ++i)
verifier.update(static_cast<byte>(i));
if(!verifier.check_signature(sig))
{
std::cout << "ECDSA self-test failed!";
++fails;
}
// now check valid signature, different input
for(u32bit i = 1; i != 256; ++i) //starting from 1
verifier.update(static_cast<byte>(i));
if(verifier.check_signature(sig))
{
std::cout << "ECDSA with bad input passed validation";
++fails;
}
// now check with original input, modified signature
sig[sig.size()/2]++;
for(u32bit i = 0; i != 256; ++i)
verifier.update(static_cast<byte>(i));
if(verifier.check_signature(sig))
{
std::cout << "ECDSA with bad signature passed validation";
++fails;
}
}
catch (std::exception& e)
{
std::cout << "Exception in test_ec_sign - " << e.what() << "\n";
++fails;
}
return fails;
}
size_t test_create_pkcs8(RandomNumberGenerator& rng)
{
size_t fails = 0;
try
{
RSA_PrivateKey rsa_key(rng, 1024);
//RSA_PrivateKey rsa_key2(1024);
//cout << "\nequal: " << (rsa_key == rsa_key2) << "\n";
//DSA_PrivateKey key(DL_Group("dsa/jce/1024"));
std::ofstream rsa_priv_key(ECC_TEST_DATA_DIR "/rsa_private.pkcs8.pem");
rsa_priv_key << PKCS8::PEM_encode(rsa_key);
EC_Group dom_pars(OID("1.3.132.0.8"));
ECDSA_PrivateKey key(rng, dom_pars);
// later used by other tests :(
std::ofstream priv_key(ECC_TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem");
priv_key << PKCS8::PEM_encode(key);
}
catch (std::exception& e)
{
std::cout << "Exception: " << e.what() << std::endl;
++fails;
}
return fails;
}
size_t test_create_and_verify(RandomNumberGenerator& rng)
{
size_t fails = 0;
EC_Group dom_pars(OID("1.3.132.0.8"));
ECDSA_PrivateKey key(rng, dom_pars);
std::ofstream priv_key(ECC_TEST_DATA_DIR "/dompar_private.pkcs8.pem");
priv_key << PKCS8::PEM_encode(key);
std::unique_ptr<PKCS8_PrivateKey> loaded_key(PKCS8::load_key(ECC_TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng));
ECDSA_PrivateKey* loaded_ec_key = dynamic_cast<ECDSA_PrivateKey*>(loaded_key.get());
CHECK_MESSAGE(loaded_ec_key, "the loaded key could not be converted into an ECDSA_PrivateKey");
std::unique_ptr<PKCS8_PrivateKey> loaded_key_1(PKCS8::load_key(ECC_TEST_DATA_DIR "/rsa_private.pkcs8.pem", rng));
ECDSA_PrivateKey* loaded_rsa_key = dynamic_cast<ECDSA_PrivateKey*>(loaded_key_1.get());
CHECK_MESSAGE(!loaded_rsa_key, "the loaded key is ECDSA_PrivateKey -> shouldn't be, is a RSA-Key");
//calc a curve which is not in the registry
// string p_secp = "2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809";
std::string a_secp = "0a377dede6b523333d36c78e9b0eaa3bf48ce93041f6d4fc34014d08f6833807498deedd4290101c5866e8dfb589485d13357b9e78c2d7fbe9fe";
std::string b_secp = "0a9acf8c8ba617777e248509bcb4717d4db346202bf9e352cd5633731dd92a51b72a4dc3b3d17c823fcc8fbda4da08f25dea89046087342595a7";
std::string G_secp_comp = "04081523d03d4f12cd02879dea4bf6a4f3a7df26ed888f10c5b2235a1274c386a2f218300dee6ed217841164533bcdc903f07a096f9fbf4ee95bac098a111f296f5830fe5c35b3e344d5df3a2256985f64fbe6d0edcc4c61d18bef681dd399df3d0194c5a4315e012e0245ecea56365baa9e8be1f7";
std::string order_g = "0e1a16196e6000000000bc7f1618d867b15bb86474418f";
// ::std::vector<byte> sv_p_secp = hex_decode ( p_secp );
auto sv_a_secp = hex_decode ( a_secp );
auto sv_b_secp = hex_decode ( b_secp );
auto sv_G_secp_comp = hex_decode ( G_secp_comp );
auto sv_order_g = hex_decode ( order_g );
// BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_p_secp("2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809");
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
BigInt bi_order_g = BigInt::decode ( &sv_order_g[0], sv_order_g.size() );
CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, curve );
EC_Group dom_params(curve, p_G, bi_order_g, BigInt(1));
if(!p_G.on_the_curve())
throw Internal_Error("Point not on the curve");
ECDSA_PrivateKey key_odd_oid(rng, dom_params);
std::string key_odd_oid_str = PKCS8::PEM_encode(key_odd_oid);
DataSource_Memory key_data_src(key_odd_oid_str);
std::unique_ptr<PKCS8_PrivateKey> loaded_key2(PKCS8::load_key(key_data_src, rng));
if(!dynamic_cast<ECDSA_PrivateKey*>(loaded_key.get()))
{
std::cout << "Failed to reload an ECDSA key with unusual parameter set\n";
++fails;
}
return fails;
}
size_t test_curve_registry(RandomNumberGenerator& rng)
{
std::vector<std::string> oids;
oids.push_back("1.3.132.0.8");
oids.push_back("1.2.840.10045.3.1.1");
oids.push_back("1.2.840.10045.3.1.2");
oids.push_back("1.2.840.10045.3.1.3");
oids.push_back("1.2.840.10045.3.1.4");
oids.push_back("1.2.840.10045.3.1.5");
oids.push_back("1.2.840.10045.3.1.6");
oids.push_back("1.2.840.10045.3.1.7");
oids.push_back("1.3.132.0.6");
oids.push_back("1.3.132.0.7");
oids.push_back("1.3.132.0.28");
oids.push_back("1.3.132.0.29");
oids.push_back("1.3.132.0.9");
oids.push_back("1.3.132.0.30");
oids.push_back("1.3.132.0.31");
oids.push_back("1.3.132.0.32");
oids.push_back("1.3.132.0.33");
oids.push_back("1.3.132.0.10");
oids.push_back("1.3.132.0.34");
oids.push_back("1.3.132.0.35");
//oids.push_back("1.3.6.1.4.1.8301.3.1.2.9.0.38");
oids.push_back("1.3.36.3.3.2.8.1.1.1");
oids.push_back("1.3.36.3.3.2.8.1.1.3");
oids.push_back("1.3.36.3.3.2.8.1.1.5");
oids.push_back("1.3.36.3.3.2.8.1.1.7");
oids.push_back("1.3.36.3.3.2.8.1.1.9");
oids.push_back("1.3.36.3.3.2.8.1.1.11");
oids.push_back("1.3.36.3.3.2.8.1.1.13");
size_t fails = 0;
unsigned int i;
for (i = 0; i < oids.size(); i++)
{
try
{
OID oid(oids[i]);
EC_Group dom_pars(oid);
ECDSA_PrivateKey ecdsa(rng, dom_pars);
PK_Signer signer(ecdsa, "EMSA1(SHA-1)");
PK_Verifier verifier(ecdsa, "EMSA1(SHA-1)");
auto msg = hex_decode("12345678901234567890abcdef12");
std::vector<byte> sig = signer.sign_message(msg, rng);
if(!verifier.verify_message(msg, sig))
{
std::cout << "Failed testing ECDSA sig for curve " << oids[i] << "\n";
++fails;
}
}
catch(Invalid_Argument& e)
{
std::cout << "Error testing curve " << oids[i] << " - " << e.what() << "\n";
++fails;
}
}
return fails;
}
size_t test_read_pkcs8(RandomNumberGenerator& rng)
{
auto msg = hex_decode("12345678901234567890abcdef12");
size_t fails = 0;
try
{
std::unique_ptr<PKCS8_PrivateKey> loaded_key(PKCS8::load_key(ECC_TEST_DATA_DIR "/wo_dompar_private.pkcs8.pem", rng));
ECDSA_PrivateKey* ecdsa = dynamic_cast<ECDSA_PrivateKey*>(loaded_key.get());
CHECK_MESSAGE(ecdsa, "the loaded key could not be converted into an ECDSA_PrivateKey");
PK_Signer signer(*ecdsa, "EMSA1(SHA-1)");
std::vector<byte> sig = signer.sign_message(msg, rng);
PK_Verifier verifier(*ecdsa, "EMSA1(SHA-1)");
CHECK_MESSAGE(verifier.verify_message(msg, sig),
"generated sig could not be verified positively");
}
catch (std::exception& e)
{
++fails;
std::cout << "Exception in test_read_pkcs8 - " << e.what() << "\n";
}
try
{
std::unique_ptr<PKCS8_PrivateKey> loaded_key_nodp(PKCS8::load_key(ECC_TEST_DATA_DIR "/nodompar_private.pkcs8.pem", rng));
// anew in each test with unregistered domain-parameters
ECDSA_PrivateKey* ecdsa_nodp = dynamic_cast<ECDSA_PrivateKey*>(loaded_key_nodp.get());
CHECK_MESSAGE(ecdsa_nodp, "the loaded key could not be converted into an ECDSA_PrivateKey");
PK_Signer signer(*ecdsa_nodp, "EMSA1(SHA-1)");
PK_Verifier verifier(*ecdsa_nodp, "EMSA1(SHA-1)");
std::vector<byte> signature_nodp = signer.sign_message(msg, rng);
CHECK_MESSAGE(verifier.verify_message(msg, signature_nodp),
"generated signature could not be verified positively (no_dom)");
try
{
std::unique_ptr<PKCS8_PrivateKey> loaded_key_withdp(
PKCS8::load_key(ECC_TEST_DATA_DIR "/withdompar_private.pkcs8.pem", rng));
std::cout << "Unexpected success: loaded key with unknown OID\n";
++fails;
}
catch (std::exception) { /* OK */ }
}
catch (std::exception& e)
{
std::cout << "Exception in test_read_pkcs8 - " << e.what() << "\n";
++fails;
}
return fails;
}
size_t test_ecc_key_with_rfc5915_extensions(RandomNumberGenerator& rng)
{
size_t fails = 0;
try
{
std::unique_ptr<PKCS8_PrivateKey> pkcs8(
PKCS8::load_key(ECC_TEST_DATA_DIR "/ecc_private_with_rfc5915_ext.pem", rng));
if(!dynamic_cast<ECDSA_PrivateKey*>(pkcs8.get()))
{
std::cout << "Loaded RFC 5915 key, but got something other than an ECDSA key\n";
++fails;
}
}
catch(std::exception& e)
{
std::cout << "Exception in " << BOTAN_CURRENT_FUNCTION << " - " << e.what() << "\n";
++fails;
}
return fails;
}
}
size_t test_ecdsa_unit()
{
size_t fails = 0;
auto& rng = test_rng();
fails += test_hash_larger_than_n(rng);
#if defined(BOTAN_HAS_X509_CERTIFICATES)
fails += test_decode_ecdsa_X509();
fails += test_decode_ver_link_SHA256();
fails += test_decode_ver_link_SHA1();
#endif
fails += test_sign_then_ver(rng);
fails += test_ec_sign(rng);
fails += test_create_pkcs8(rng);
fails += test_create_and_verify(rng);
fails += test_curve_registry(rng);
fails += test_read_pkcs8(rng);
fails += test_ecc_key_with_rfc5915_extensions(rng);
test_report("ECDSA", 11, fails);
return fails;
}
#else
size_t test_ecdsa_unit() { return 0; }
#endif
|