1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* ECDH tests
*
* (C) 2007 Manuel Hartl (hartl@flexsecure.de)
* 2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include "tests.h"
#if defined(BOTAN_HAS_ECDH)
#include <iostream>
#include <fstream>
#include <botan/auto_rng.h>
#include <botan/pubkey.h>
#include <botan/ecdh.h>
#if defined(BOTAN_HAS_X509_CERTIFICATES)
#include <botan/x509self.h>
#endif
#include <botan/der_enc.h>
using namespace Botan;
#define CHECK_MESSAGE(expr, print) try { if(!(expr)) { ++fails; std::cout << print << "\n"; } } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
#define CHECK(expr) try { if(!(expr)) { ++fails; std::cout << #expr << "\n"; } } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
namespace {
size_t test_ecdh_normal_derivation(RandomNumberGenerator& rng)
{
size_t fails = 0;
EC_Group dom_pars(OID("1.3.132.0.8"));
ECDH_PrivateKey private_a(rng, dom_pars);
ECDH_PrivateKey private_b(rng, dom_pars); //public_a.getCurve()
PK_Key_Agreement ka(private_a, "KDF2(SHA-1)");
PK_Key_Agreement kb(private_b, "KDF2(SHA-1)");
SymmetricKey alice_key = ka.derive_key(32, private_b.public_value());
SymmetricKey bob_key = kb.derive_key(32, private_a.public_value());
if(alice_key != bob_key)
{
std::cout << "The two keys didn't match!\n";
std::cout << "Alice's key was: " << alice_key.as_string() << "\n";
std::cout << "Bob's key was: " << bob_key.as_string() << "\n";
++fails;
}
return fails;
}
size_t test_ecdh_some_dp(RandomNumberGenerator& rng)
{
size_t fails = 0;
std::vector<std::string> oids;
oids.push_back("1.2.840.10045.3.1.7");
oids.push_back("1.3.132.0.8");
oids.push_back("1.2.840.10045.3.1.1");
for(u32bit i = 0; i< oids.size(); i++)
{
OID oid(oids[i]);
EC_Group dom_pars(oid);
ECDH_PrivateKey private_a(rng, dom_pars);
ECDH_PrivateKey private_b(rng, dom_pars);
PK_Key_Agreement ka(private_a, "KDF2(SHA-1)");
PK_Key_Agreement kb(private_b, "KDF2(SHA-1)");
SymmetricKey alice_key = ka.derive_key(32, private_b.public_value());
SymmetricKey bob_key = kb.derive_key(32, private_a.public_value());
CHECK_MESSAGE(alice_key == bob_key, "different keys - " << "Alice's key was: " << alice_key.as_string() << ", Bob's key was: " << bob_key.as_string());
}
return fails;
}
size_t test_ecdh_der_derivation(RandomNumberGenerator& rng)
{
size_t fails = 0;
std::vector<std::string> oids;
oids.push_back("1.2.840.10045.3.1.7");
oids.push_back("1.3.132.0.8");
oids.push_back("1.2.840.10045.3.1.1");
for(u32bit i = 0; i< oids.size(); i++)
{
OID oid(oids[i]);
EC_Group dom_pars(oid);
ECDH_PrivateKey private_a(rng, dom_pars);
ECDH_PrivateKey private_b(rng, dom_pars);
std::vector<byte> key_a = private_a.public_value();
std::vector<byte> key_b = private_b.public_value();
PK_Key_Agreement ka(private_a, "KDF2(SHA-1)");
PK_Key_Agreement kb(private_b, "KDF2(SHA-1)");
SymmetricKey alice_key = ka.derive_key(32, key_b);
SymmetricKey bob_key = kb.derive_key(32, key_a);
CHECK_MESSAGE(alice_key == bob_key, "different keys - " << "Alice's key was: " << alice_key.as_string() << ", Bob's key was: " << bob_key.as_string());
}
return fails;
}
}
size_t test_ecdh_unit()
{
size_t fails = 0;
AutoSeeded_RNG rng;
fails += test_ecdh_normal_derivation(rng);
fails += test_ecdh_some_dp(rng);
fails += test_ecdh_der_derivation(rng);
test_report("ECDH", 3, fails);
return fails;
}
#else
size_t test_ecdh_unit() { return 0; }
#endif
|