1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
/*
* (C) 2009,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "test_pubkey.h"
#if defined(BOTAN_HAS_PUBLIC_KEY_CRYPTO)
#include "test_rng.h"
#include <botan/pubkey.h>
#include <botan/x509_key.h>
#include <botan/pkcs8.h>
#include <botan/oids.h>
#include <botan/hex.h>
namespace Botan_Tests {
namespace {
std::vector<std::string> possible_pk_providers()
{
return { "base", "openssl", "tpm" };
}
}
void check_invalid_signatures(Test::Result& result,
Botan::PK_Verifier& verifier,
const std::vector<uint8_t>& message,
const std::vector<uint8_t>& signature)
{
const std::vector<uint8_t> zero_sig(signature.size());
result.test_eq("all zero signature invalid", verifier.verify_message(message, zero_sig), false);
std::vector<uint8_t> bad_sig = signature;
for(size_t i = 0; i <= Test::soak_level(); ++i)
{
while(bad_sig == signature)
bad_sig = Test::mutate_vec(bad_sig, true);
if(!result.test_eq("incorrect signature invalid",
verifier.verify_message(message, bad_sig), false))
{
result.test_note("Accepted invalid signature " + Botan::hex_encode(bad_sig));
}
}
}
void check_invalid_ciphertexts(Test::Result& result,
Botan::PK_Decryptor& decryptor,
const std::vector<uint8_t>& plaintext,
const std::vector<uint8_t>& ciphertext)
{
std::vector<uint8_t> bad_ctext = ciphertext;
size_t ciphertext_accepted = 0, ciphertext_rejected = 0;
for(size_t i = 0; i <= Test::soak_level(); ++i)
{
while(bad_ctext == ciphertext)
bad_ctext = Test::mutate_vec(bad_ctext, true);
try
{
const Botan::secure_vector<uint8_t> decrypted = decryptor.decrypt(bad_ctext);
++ciphertext_accepted;
if(!result.test_ne("incorrect ciphertext different", decrypted, plaintext))
{
result.test_eq("used corrupted ciphertext", bad_ctext, ciphertext);
}
}
catch(std::exception&)
{
++ciphertext_rejected;
}
}
result.test_note("Accepted " + std::to_string(ciphertext_accepted) +
" invalid ciphertexts, rejected " + std::to_string(ciphertext_rejected));
}
Test::Result
PK_Signature_Generation_Test::run_one_test(const std::string&, const VarMap& vars)
{
const std::vector<uint8_t> message = get_req_bin(vars, "Msg");
const std::vector<uint8_t> signature = get_req_bin(vars, "Signature");
const std::string padding = get_opt_str(vars, "Padding", default_padding(vars));
Test::Result result(algo_name() + "/" + padding + " signature generation");
std::unique_ptr<Botan::Private_Key> privkey = load_private_key(vars);
std::unique_ptr<Botan::Public_Key> pubkey(Botan::X509::load_key(Botan::X509::BER_encode(*privkey)));
for(auto&& sign_provider : possible_pk_providers())
{
std::unique_ptr<Botan::PK_Signer> signer;
try
{
signer.reset(new Botan::PK_Signer(*privkey, padding, Botan::IEEE_1363, sign_provider));
}
catch(Botan::Lookup_Error&)
{
//result.test_note("Skipping signing with " + sign_provider);
continue;
}
std::unique_ptr<Botan::RandomNumberGenerator> rng;
if(vars.count("Nonce"))
{
rng.reset(new Fixed_Output_RNG(get_req_bin(vars, "Nonce")));
}
const std::vector<uint8_t> generated_signature =
signer->sign_message(message, rng ? *rng : Test::rng());
if(sign_provider == "base")
{
result.test_eq("generated signature matches KAT", generated_signature, signature);
}
for(auto&& verify_provider : possible_pk_providers())
{
std::unique_ptr<Botan::PK_Verifier> verifier;
try
{
verifier.reset(new Botan::PK_Verifier(*pubkey, padding, Botan::IEEE_1363, verify_provider));
}
catch(Botan::Lookup_Error&)
{
//result.test_note("Skipping verifying with " + verify_provider);
continue;
}
if(!result.test_eq("generated signature valid",
verifier->verify_message(message, generated_signature), true))
{
result.test_failure("generated signature", generated_signature);
}
check_invalid_signatures(result, *verifier, message, signature);
result.test_eq("KAT signature valid", verifier->verify_message(message, signature), true);
}
}
return result;
}
Test::Result
PK_Signature_Verification_Test::run_one_test(const std::string&, const VarMap& vars)
{
const std::vector<uint8_t> message = get_req_bin(vars, "Msg");
const std::vector<uint8_t> signature = get_req_bin(vars, "Signature");
const std::string padding = get_opt_str(vars, "Padding", default_padding(vars));
std::unique_ptr<Botan::Public_Key> pubkey = load_public_key(vars);
Test::Result result(algo_name() + "/" + padding + " signature verification");
for(auto&& verify_provider : possible_pk_providers())
{
std::unique_ptr<Botan::PK_Verifier> verifier;
try
{
verifier.reset(new Botan::PK_Verifier(*pubkey, padding, Botan::IEEE_1363, verify_provider));
result.test_eq("correct signature valid", verifier->verify_message(message, signature), true);
check_invalid_signatures(result, *verifier, message, signature);
}
catch(Botan::Lookup_Error&)
{
result.test_note("Skipping verifying with " + verify_provider);
}
}
return result;
}
Test::Result
PK_Encryption_Decryption_Test::run_one_test(const std::string&, const VarMap& vars)
{
const std::vector<uint8_t> plaintext = get_req_bin(vars, "Msg");
const std::vector<uint8_t> ciphertext = get_req_bin(vars, "Ciphertext");
const std::string padding = get_opt_str(vars, "Padding", default_padding(vars));
Test::Result result(algo_name() + "/" + padding + " decryption");
std::unique_ptr<Botan::Private_Key> privkey = load_private_key(vars);
// instead slice the private key to work around elgamal test inputs
//std::unique_ptr<Botan::Public_Key> pubkey(Botan::X509::load_key(Botan::X509::BER_encode(*privkey)));
Botan::Public_Key* pubkey = privkey.get();
for(auto&& enc_provider : possible_pk_providers())
{
std::unique_ptr<Botan::PK_Encryptor> encryptor;
try
{
encryptor.reset(new Botan::PK_Encryptor_EME(*pubkey, padding, enc_provider));
}
catch(Botan::Lookup_Error&)
{
//result.test_note("Skipping encryption with provider " + enc_provider);
continue;
}
std::unique_ptr<Botan::RandomNumberGenerator> kat_rng;
if(vars.count("Nonce"))
{
kat_rng.reset(new Fixed_Output_RNG(get_req_bin(vars, "Nonce")));
}
const std::vector<uint8_t> generated_ciphertext =
encryptor->encrypt(plaintext, kat_rng ? *kat_rng : Test::rng());
if(enc_provider == "base")
{
result.test_eq("generated ciphertext matches KAT", generated_ciphertext, ciphertext);
}
for(auto&& dec_provider : possible_pk_providers())
{
std::unique_ptr<Botan::PK_Decryptor> decryptor;
try
{
decryptor.reset(new Botan::PK_Decryptor_EME(*privkey, padding, dec_provider));
}
catch(Botan::Lookup_Error&)
{
//result.test_note("Skipping decryption with provider " + dec_provider);
continue;
}
result.test_eq("decryption of KAT", decryptor->decrypt(ciphertext), plaintext);
check_invalid_ciphertexts(result, *decryptor, plaintext, ciphertext);
result.test_eq("decryption of generated ciphertext",
decryptor->decrypt(generated_ciphertext), plaintext);
}
}
return result;
}
Test::Result PK_KEM_Test::run_one_test(const std::string&, const VarMap& vars)
{
const std::vector<uint8_t> K = get_req_bin(vars, "K");
const std::vector<uint8_t> C0 = get_req_bin(vars, "C0");
const std::vector<uint8_t> salt = get_opt_bin(vars, "Salt");
const std::string kdf = get_req_str(vars, "KDF");
Test::Result result(algo_name() + "/" + kdf + " KEM");
std::unique_ptr<Botan::Private_Key> privkey = load_private_key(vars);
const size_t desired_key_len = K.size();
Botan::PK_KEM_Encryptor enc(*privkey, kdf);
Fixed_Output_RNG fixed_output_rng(get_req_bin(vars, "R"));
Botan::secure_vector<byte> produced_encap_key, shared_key;
enc.encrypt(produced_encap_key,
shared_key,
desired_key_len,
fixed_output_rng,
salt);
result.test_eq("C0 matches", produced_encap_key, C0);
result.test_eq("K matches", shared_key, K);
Botan::PK_KEM_Decryptor dec(*privkey, kdf);
const Botan::secure_vector<uint8_t> decr_shared_key =
dec.decrypt(C0.data(), C0.size(),
desired_key_len,
salt.data(),
salt.size());
result.test_eq("decrypted K matches", decr_shared_key, K);
return result;
}
Test::Result PK_Key_Agreement_Test::run_one_test(const std::string&, const VarMap& vars)
{
const std::vector<uint8_t> shared = get_req_bin(vars, "K");
const std::string kdf = get_opt_str(vars, "KDF", default_kdf(vars));
Test::Result result(algo_name() + "/" + kdf + " key agreement");
std::unique_ptr<Botan::Private_Key> privkey = load_our_key(vars);
const std::vector<uint8_t> pubkey = load_their_key(vars);
const size_t key_len = get_opt_sz(vars, "OutLen", 0);
Botan::PK_Key_Agreement kas(*privkey, kdf);
result.test_eq("agreement", kas.derive_key(key_len, pubkey).bits_of(), shared);
return result;
}
std::vector<Test::Result> PK_Key_Generation_Test::run()
{
std::vector<Test::Result> results;
for(auto&& param : keygen_params())
{
std::unique_ptr<Botan::Private_Key> key = make_key(Test::rng(), param);
const std::string report_name = key->algo_name() + (param.empty() ? param : " " + param);
results.push_back(test_key(report_name, *key));
}
return results;
}
Test::Result
PK_Key_Generation_Test::test_key(const std::string& algo, const Botan::Private_Key& key)
{
Test::Result result(algo + " keygen");
try
{
Botan::DataSource_Memory data_src(Botan::X509::PEM_encode(key));
std::unique_ptr<Botan::Public_Key> loaded(Botan::X509::load_key(data_src));
result.test_eq("recovered public key from private", loaded.get(), true);
result.test_eq("public key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("public key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip PEM public key", e.what());
}
try
{
Botan::DataSource_Memory data_src(Botan::X509::BER_encode(key));
std::unique_ptr<Botan::Public_Key> loaded(Botan::X509::load_key(data_src));
result.test_eq("recovered public key from private", loaded.get(), true);
result.test_eq("public key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("public key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip BER public key", e.what());
}
try
{
Botan::DataSource_Memory data_src(Botan::PKCS8::PEM_encode(key));
std::unique_ptr<Botan::Private_Key> loaded(
Botan::PKCS8::load_key(data_src, Test::rng()));
result.test_eq("recovered private key from PEM blob", loaded.get(), true);
result.test_eq("reloaded key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("private key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip PEM private key", e.what());
}
/*
// Currently broken GH #379
try
{
Botan::DataSource_Memory data_src(Botan::PKCS8::BER_encode(key));
std::unique_ptr<Botan::Public_Key> loaded(Botan::PKCS8::load_key(data_src, Test::rng()));
result.test_eq("recovered public key from private", loaded.get(), true);
result.test_eq("public key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("public key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip BER private key", e.what());
}
*/
const std::string passphrase = Test::random_password();
try
{
Botan::DataSource_Memory data_src(
Botan::PKCS8::PEM_encode(key, Test::rng(), passphrase,
std::chrono::milliseconds(10)));
std::unique_ptr<Botan::Private_Key> loaded(
Botan::PKCS8::load_key(data_src, Test::rng(), passphrase));
result.test_eq("recovered private key from encrypted blob", loaded.get(), true);
result.test_eq("reloaded key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("private key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip encrypted PEM private key", e.what());
}
try
{
Botan::DataSource_Memory data_src(
Botan::PKCS8::BER_encode(key, Test::rng(), passphrase,
std::chrono::milliseconds(10)));
std::unique_ptr<Botan::Private_Key> loaded(
Botan::PKCS8::load_key(data_src, Test::rng(), passphrase));
result.test_eq("recovered private key from BER blob", loaded.get(), true);
result.test_eq("reloaded key has same type", loaded->algo_name(), key.algo_name());
result.test_eq("private key passes checks", loaded->check_key(Test::rng(), false), true);
}
catch(std::exception& e)
{
result.test_failure("roundtrip encrypted BER private key", e.what());
}
return result;
}
}
#endif
|