1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
/*
* (C) 2014,2015,2017 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "tests.h"
#if defined(BOTAN_HAS_CIPHER_MODES)
#include <botan/cipher_mode.h>
#endif
namespace Botan_Tests {
#if defined(BOTAN_HAS_CIPHER_MODES)
class Cipher_Mode_Tests final : public Text_Based_Test
{
public:
Cipher_Mode_Tests()
: Text_Based_Test("modes", "Key,Nonce,In,Out") {}
std::vector<std::string> possible_providers(const std::string& algo) override
{
return provider_filter(Botan::Cipher_Mode::providers(algo));
}
Test::Result run_one_test(const std::string& algo, const VarMap& vars) override
{
const std::vector<uint8_t> key = vars.get_req_bin("Key");
const std::vector<uint8_t> nonce = vars.get_opt_bin("Nonce");
const std::vector<uint8_t> input = vars.get_req_bin("In");
const std::vector<uint8_t> expected = vars.get_req_bin("Out");
Test::Result result(algo);
const std::vector<std::string> providers = possible_providers(algo);
if(providers.empty())
{
result.note_missing("cipher mode " + algo);
return result;
}
for(auto&& provider_ask : providers)
{
std::unique_ptr<Botan::Cipher_Mode> enc(Botan::Cipher_Mode::create(
algo, Botan::ENCRYPTION, provider_ask));
std::unique_ptr<Botan::Cipher_Mode> dec(Botan::Cipher_Mode::create(
algo, Botan::DECRYPTION, provider_ask));
if(!enc || !dec)
{
result.note_missing(algo);
return result;
}
result.test_is_nonempty("provider", enc->provider());
result.test_eq("name", enc->name(), algo);
result.test_eq("mode not authenticated", enc->authenticated(), false);
result.test_throws("Unkeyed object throws for encrypt",
[&]() { Botan::secure_vector<uint8_t> bad(16); enc->finish(bad); });
result.test_throws("Unkeyed object throws for decrypt",
[&]() { Botan::secure_vector<uint8_t> bad(16); dec->finish(bad); });
if(algo.find("/CTR") == std::string::npos)
{
// can't test equal due to CBC padding
result.test_lte("output_length", enc->output_length(input.size()), expected.size());
result.test_gte("output_length", dec->output_length(expected.size()), input.size());
}
else
{
// assume all other modes are not expanding (currently true)
result.test_eq("output_length", enc->output_length(input.size()), expected.size());
result.test_eq("output_length", dec->output_length(expected.size()), input.size());
}
// FFI currently requires this, so assure it is true for all modes
result.test_gte("enc buffer sizes ok", enc->update_granularity(), enc->minimum_final_size());
result.test_gte("dec buffer sizes ok", dec->update_granularity(), dec->minimum_final_size());
result.confirm("default nonce size is allowed",
enc->valid_nonce_length(enc->default_nonce_length()));
result.confirm("default nonce size is allowed",
dec->valid_nonce_length(dec->default_nonce_length()));
// Test that disallowed nonce sizes result in an exception
const size_t large_nonce_size = 65000;
result.test_eq("Large nonce not allowed", enc->valid_nonce_length(large_nonce_size), false);
result.test_throws("Large nonce causes exception",
[&enc,large_nonce_size]() { enc->start(nullptr, large_nonce_size); });
// Test to make sure reset() resets what we need it to
enc->set_key(mutate_vec(key));
Botan::secure_vector<uint8_t> garbage = Test::rng().random_vec(enc->update_granularity());
if(algo.find("CTR") == std::string::npos)
{
result.test_throws("Cannot process data until nonce is set (enc)",
[&]() { enc->update(garbage); });
}
enc->start(mutate_vec(nonce));
enc->update(garbage);
enc->reset();
enc->set_key(key);
enc->start(nonce);
Botan::secure_vector<uint8_t> buf(input.begin(), input.end());
// TODO: should first update if possible
enc->finish(buf);
result.test_eq("encrypt", buf, expected);
// additionally test process() if possible
size_t update_granularity = enc->update_granularity();
size_t input_length = input.size();
size_t min_final_bytes = enc->minimum_final_size();
if(input_length > (update_granularity + min_final_bytes))
{
// reset state first
enc->reset();
enc->start(nonce);
buf.assign(input.begin(), input.end());
// we can process at max input_length
const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
const size_t bytes_to_process = max_blocks_to_process * update_granularity;
const size_t bytes_written = enc->process(buf.data(), bytes_to_process);
result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);
enc->finish(buf, bytes_to_process);
result.test_eq("encrypt", buf, expected);
}
// decryption
buf.assign(expected.begin(), expected.end());
// Test to make sure reset() resets what we need it to
dec->set_key(mutate_vec(key));
garbage = Test::rng().random_vec(dec->update_granularity());
if(algo.find("CTR") == std::string::npos)
{
result.test_throws("Cannot process data until nonce is set (dec)",
[&]() { dec->update(garbage); });
}
dec->start(mutate_vec(nonce));
dec->update(garbage);
dec->reset();
dec->set_key(key);
dec->start(nonce);
dec->finish(buf);
result.test_eq("decrypt", buf, input);
// additionally test process() if possible
update_granularity = dec->update_granularity();
input_length = expected.size();
min_final_bytes = dec->minimum_final_size();
if(input_length > (update_granularity + min_final_bytes))
{
// reset state first
dec->reset();
dec->start(nonce);
buf.assign(expected.begin(), expected.end());
// we can process at max input_length
const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
const size_t bytes_to_process = max_blocks_to_process * update_granularity;
const size_t bytes_written = dec->process(buf.data(), bytes_to_process);
result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);
dec->finish(buf, bytes_to_process);
result.test_eq("decrypt", buf, input);
}
enc->clear();
dec->clear();
result.test_throws("Unkeyed object throws for encrypt after clear",
[&]() { Botan::secure_vector<uint8_t> bad(16); enc->finish(bad); });
result.test_throws("Unkeyed object throws for decrypt after clear",
[&]() { Botan::secure_vector<uint8_t> bad(16); dec->finish(bad); });
}
return result;
}
};
BOTAN_REGISTER_TEST("modes", Cipher_Mode_Tests);
class Cipher_Mode_IV_Carry_Tests final : public Test
{
public:
std::vector<Test::Result> run() override
{
std::vector<Test::Result> results;
results.push_back(test_cbc_iv_carry());
results.push_back(test_cfb_iv_carry());
results.push_back(test_ctr_iv_carry());
return results;
}
private:
Test::Result test_cbc_iv_carry()
{
Test::Result result("CBC IV carry");
#if defined(BOTAN_HAS_MODE_CBC) && defined(BOTAN_HAS_AES)
std::unique_ptr<Botan::Cipher_Mode> enc(
Botan::Cipher_Mode::create("AES-128/CBC/PKCS7", Botan::ENCRYPTION));
std::unique_ptr<Botan::Cipher_Mode> dec(
Botan::Cipher_Mode::create("AES-128/CBC/PKCS7", Botan::DECRYPTION));
const std::vector<uint8_t> key(16, 0xAA);
const std::vector<uint8_t> iv(16, 0xAA);
Botan::secure_vector<uint8_t> msg1 =
Botan::hex_decode_locked("446F6E27742075736520706C61696E20434243206D6F6465");
Botan::secure_vector<uint8_t> msg2 =
Botan::hex_decode_locked("49562063617272796F766572");
Botan::secure_vector<uint8_t> msg3 =
Botan::hex_decode_locked("49562063617272796F76657232");
enc->set_key(key);
dec->set_key(key);
enc->start(iv);
enc->finish(msg1);
result.test_eq("First ciphertext", msg1,
"9BDD7300E0CB61CA71FFF957A71605DB6836159C36781246A1ADF50982757F4B");
enc->start();
enc->finish(msg2);
result.test_eq("Second ciphertext", msg2,
"AA8D682958A4A044735DAC502B274DB2");
enc->start();
enc->finish(msg3);
result.test_eq("Third ciphertext", msg3,
"1241B9976F73051BCF809525D6E86C25");
dec->start(iv);
dec->finish(msg1);
dec->start();
dec->finish(msg2);
dec->start();
dec->finish(msg3);
result.test_eq("Third plaintext", msg3, "49562063617272796F76657232");
#endif
return result;
}
Test::Result test_cfb_iv_carry()
{
Test::Result result("CFB IV carry");
#if defined(BOTAN_HAS_MODE_CFB) && defined(BOTAN_HAS_AES)
std::unique_ptr<Botan::Cipher_Mode> enc(
Botan::Cipher_Mode::create("AES-128/CFB(8)", Botan::ENCRYPTION));
std::unique_ptr<Botan::Cipher_Mode> dec(
Botan::Cipher_Mode::create("AES-128/CFB(8)", Botan::DECRYPTION));
const std::vector<uint8_t> key(16, 0xAA);
const std::vector<uint8_t> iv(16, 0xAB);
Botan::secure_vector<uint8_t> msg1 = Botan::hex_decode_locked("ABCDEF01234567");
Botan::secure_vector<uint8_t> msg2 = Botan::hex_decode_locked("0000123456ABCDEF");
Botan::secure_vector<uint8_t> msg3 = Botan::hex_decode_locked("012345");
enc->set_key(key);
dec->set_key(key);
enc->start(iv);
enc->finish(msg1);
result.test_eq("First ciphertext", msg1, "a51522387c4c9b");
enc->start();
enc->finish(msg2);
result.test_eq("Second ciphertext", msg2, "105457dc2e0649d4");
enc->start();
enc->finish(msg3);
result.test_eq("Third ciphertext", msg3, "53bd65");
dec->start(iv);
dec->finish(msg1);
result.test_eq("First plaintext", msg1, "ABCDEF01234567");
dec->start();
dec->finish(msg2);
result.test_eq("Second plaintext", msg2, "0000123456ABCDEF");
dec->start();
dec->finish(msg3);
result.test_eq("Third plaintext", msg3, "012345");
#endif
return result;
}
Test::Result test_ctr_iv_carry()
{
Test::Result result("CTR IV carry");
#if defined(BOTAN_HAS_CTR_BE) && defined(BOTAN_HAS_AES)
std::unique_ptr<Botan::Cipher_Mode> enc(
Botan::Cipher_Mode::create("AES-128/CTR-BE", Botan::ENCRYPTION));
std::unique_ptr<Botan::Cipher_Mode> dec(
Botan::Cipher_Mode::create("AES-128/CTR-BE", Botan::DECRYPTION));
const std::vector<uint8_t> key =
Botan::hex_decode("2B7E151628AED2A6ABF7158809CF4F3C");
const std::vector<uint8_t> iv =
Botan::hex_decode("F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF");
enc->set_key(key);
dec->set_key(key);
const std::vector<std::string> exp_ciphertext = {
"EC",
"8CDF",
"739860",
"7CB0F2D2",
"1675EA9EA1",
"E4362B7C3C67",
"73516318A077D7",
"FC5073AE6A2CC378",
"7889374FBEB4C81B17",
"BA6C44E89C399FF0F198C",
};
for(size_t i = 1; i != 10; ++i)
{
if(i == 1)
{
enc->start(iv);
dec->start(iv);
}
else
{
enc->start();
dec->start();
}
Botan::secure_vector<uint8_t> msg(i, 0);
enc->finish(msg);
result.test_eq("Ciphertext", msg, exp_ciphertext[i-1].c_str());
dec->finish(msg);
for(size_t j = 0; j != msg.size(); ++j)
result.test_eq("Plaintext zeros", static_cast<size_t>(msg[j]), 0);
}
#endif
return result;
}
};
BOTAN_REGISTER_TEST("iv_carryover", Cipher_Mode_IV_Carry_Tests);
#endif
}
|