aboutsummaryrefslogtreecommitdiffstats
path: root/src/tests/test_modes.cpp
blob: 74b04f7ac5c5d07e53fad0d90327358b03c337af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
* (C) 2014,2015 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include "tests.h"

#if defined(BOTAN_HAS_MODES)
   #include <botan/cipher_mode.h>
#endif

namespace Botan_Tests {

#if defined(BOTAN_HAS_MODES)

class Cipher_Mode_Tests : public Text_Based_Test
   {
   public:
      Cipher_Mode_Tests()
         : Text_Based_Test("modes", "Key,Nonce,In,Out") {}

      std::vector<std::string> possible_providers(const std::string& algo) override
         {
         return provider_filter(Botan::Cipher_Mode::providers(algo));
         }

      Test::Result run_one_test(const std::string& algo, const VarMap& vars) override
         {
         const std::vector<uint8_t> key      = get_req_bin(vars, "Key");
         const std::vector<uint8_t> nonce    = get_opt_bin(vars, "Nonce");
         const std::vector<uint8_t> input    = get_req_bin(vars, "In");
         const std::vector<uint8_t> expected = get_req_bin(vars, "Out");

         Test::Result result(algo);

         const std::vector<std::string> providers = possible_providers(algo);

         if(providers.empty())
            {
            result.note_missing("cipher mode " + algo);
            return result;
            }

         for(auto&& provider_ask : providers)
            {
            std::unique_ptr<Botan::Cipher_Mode> enc(Botan::get_cipher_mode(
                  algo, Botan::ENCRYPTION, provider_ask));
            std::unique_ptr<Botan::Cipher_Mode> dec(Botan::get_cipher_mode(
                  algo, Botan::DECRYPTION, provider_ask));

            if(!enc || !dec)
               {
               result.note_missing(algo);
               return result;
               }

            result.test_is_nonempty("provider", enc->provider());
            result.test_eq("name", enc->name(), algo);

            result.test_eq("mode not authenticated", enc->authenticated(), false);

            // Test to make sure reset() resets what we need it to
            enc->set_key(mutate_vec(key));
            Botan::secure_vector<uint8_t> garbage = Test::rng().random_vec(enc->update_granularity());
            enc->start(mutate_vec(nonce));
            enc->update(garbage);

            enc->reset();

            enc->set_key(key);
            enc->start(nonce);

            Botan::secure_vector<uint8_t> buf(input.begin(), input.end());
            // TODO: should first update if possible
            enc->finish(buf);
            result.test_eq("encrypt", buf, expected);

            // additionally test process() if possible
            size_t update_granularity = enc->update_granularity();
            size_t input_length = input.size();
            size_t min_final_bytes = enc->minimum_final_size();
            if(input_length > (update_granularity + min_final_bytes))
               {
               // reset state first
               enc->reset();

               enc->start(nonce);
               buf.assign(input.begin(), input.end());

               // we can process at max input_length
               const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
               const size_t bytes_to_process = max_blocks_to_process * update_granularity;

               const size_t bytes_written = enc->process(buf.data(), bytes_to_process);

               result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);

               enc->finish(buf, bytes_to_process);
               result.test_eq("encrypt", buf, expected);
               }

            // decryption
            buf.assign(expected.begin(), expected.end());

            // Test to make sure reset() resets what we need it to
            dec->set_key(mutate_vec(key));
            garbage = Test::rng().random_vec(dec->update_granularity());
            dec->start(mutate_vec(nonce));
            dec->update(garbage);

            dec->reset();

            dec->set_key(key);
            dec->start(nonce);
            dec->finish(buf);
            result.test_eq("decrypt", buf, input);

            // additionally test process() if possible
            update_granularity = dec->update_granularity();
            input_length = expected.size();
            min_final_bytes = dec->minimum_final_size();
            if(input_length > (update_granularity + min_final_bytes))
               {
               // reset state first
               dec->reset();

               dec->start(nonce);
               buf.assign(expected.begin(), expected.end());

               // we can process at max input_length
               const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
               const size_t bytes_to_process = max_blocks_to_process * update_granularity;

               const size_t bytes_written = dec->process(buf.data(), bytes_to_process);

               result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);

               dec->finish(buf, bytes_to_process);
               result.test_eq("decrypt", buf, input);
               }

            enc->clear();
            dec->clear();
            }

         return result;
         }
   };

BOTAN_REGISTER_TEST("modes", Cipher_Mode_Tests);

#endif

}