aboutsummaryrefslogtreecommitdiffstats
path: root/src/tests/test_modes.cpp
blob: f6cb8890b35462a553222a05f8fbf09136dd3aff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
* (C) 2014,2015,2017 Jack Lloyd
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include "tests.h"

#if defined(BOTAN_HAS_MODES)
   #include <botan/cipher_mode.h>
#endif

namespace Botan_Tests {

#if defined(BOTAN_HAS_MODES)

class Cipher_Mode_Tests : public Text_Based_Test
   {
   public:
      Cipher_Mode_Tests()
         : Text_Based_Test("modes", "Key,Nonce,In,Out") {}

      std::vector<std::string> possible_providers(const std::string& algo) override
         {
         return provider_filter(Botan::Cipher_Mode::providers(algo));
         }

      Test::Result run_one_test(const std::string& algo, const VarMap& vars) override
         {
         const std::vector<uint8_t> key      = get_req_bin(vars, "Key");
         const std::vector<uint8_t> nonce    = get_opt_bin(vars, "Nonce");
         const std::vector<uint8_t> input    = get_req_bin(vars, "In");
         const std::vector<uint8_t> expected = get_req_bin(vars, "Out");

         Test::Result result(algo);

         const std::vector<std::string> providers = possible_providers(algo);

         if(providers.empty())
            {
            result.note_missing("cipher mode " + algo);
            return result;
            }

         for(auto&& provider_ask : providers)
            {
            std::unique_ptr<Botan::Cipher_Mode> enc(Botan::get_cipher_mode(
                  algo, Botan::ENCRYPTION, provider_ask));
            std::unique_ptr<Botan::Cipher_Mode> dec(Botan::get_cipher_mode(
                  algo, Botan::DECRYPTION, provider_ask));

            if(!enc || !dec)
               {
               result.note_missing(algo);
               return result;
               }

            result.test_is_nonempty("provider", enc->provider());
            result.test_eq("name", enc->name(), algo);

            result.test_eq("mode not authenticated", enc->authenticated(), false);

            // Test to make sure reset() resets what we need it to
            enc->set_key(mutate_vec(key));
            Botan::secure_vector<uint8_t> garbage = Test::rng().random_vec(enc->update_granularity());
            enc->start(mutate_vec(nonce));
            enc->update(garbage);

            enc->reset();

            enc->set_key(key);
            enc->start(nonce);

            Botan::secure_vector<uint8_t> buf(input.begin(), input.end());
            // TODO: should first update if possible
            enc->finish(buf);
            result.test_eq("encrypt", buf, expected);

            // additionally test process() if possible
            size_t update_granularity = enc->update_granularity();
            size_t input_length = input.size();
            size_t min_final_bytes = enc->minimum_final_size();
            if(input_length > (update_granularity + min_final_bytes))
               {
               // reset state first
               enc->reset();

               enc->start(nonce);
               buf.assign(input.begin(), input.end());

               // we can process at max input_length
               const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
               const size_t bytes_to_process = max_blocks_to_process * update_granularity;

               const size_t bytes_written = enc->process(buf.data(), bytes_to_process);

               result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);

               enc->finish(buf, bytes_to_process);
               result.test_eq("encrypt", buf, expected);
               }

            // decryption
            buf.assign(expected.begin(), expected.end());

            // Test to make sure reset() resets what we need it to
            dec->set_key(mutate_vec(key));
            garbage = Test::rng().random_vec(dec->update_granularity());
            dec->start(mutate_vec(nonce));
            dec->update(garbage);

            dec->reset();

            dec->set_key(key);
            dec->start(nonce);
            dec->finish(buf);
            result.test_eq("decrypt", buf, input);

            // additionally test process() if possible
            update_granularity = dec->update_granularity();
            input_length = expected.size();
            min_final_bytes = dec->minimum_final_size();
            if(input_length > (update_granularity + min_final_bytes))
               {
               // reset state first
               dec->reset();

               dec->start(nonce);
               buf.assign(expected.begin(), expected.end());

               // we can process at max input_length
               const size_t max_blocks_to_process = (input_length - min_final_bytes) / update_granularity;
               const size_t bytes_to_process = max_blocks_to_process * update_granularity;

               const size_t bytes_written = dec->process(buf.data(), bytes_to_process);

               result.test_eq("correct number of bytes processed", bytes_written, bytes_to_process);

               dec->finish(buf, bytes_to_process);
               result.test_eq("decrypt", buf, input);
               }

            enc->clear();
            dec->clear();
            }

         return result;
         }
   };

BOTAN_REGISTER_TEST("modes", Cipher_Mode_Tests);

class Cipher_Mode_IV_Carry_Tests : public Test
   {
   public:
      std::vector<Test::Result> run() override
         {
         std::vector<Test::Result> results;
         results.push_back(test_cbc_iv_carry());
         results.push_back(test_cfb_iv_carry());
         results.push_back(test_ctr_iv_carry());
         return results;
         }

   private:
      Test::Result test_cbc_iv_carry()
         {
         Test::Result result("CBC IV carry");

#if defined(BOTAN_HAS_MODE_CBC) && defined(BOTAN_HAS_AES)
         std::unique_ptr<Botan::Cipher_Mode> enc(
            Botan::get_cipher_mode("AES-128/CBC/PKCS7", Botan::ENCRYPTION));
         std::unique_ptr<Botan::Cipher_Mode> dec(
            Botan::get_cipher_mode("AES-128/CBC/PKCS7", Botan::DECRYPTION));

         const std::vector<uint8_t> key(16, 0xAA);
         const std::vector<uint8_t> iv(16, 0xAA);

         Botan::secure_vector<uint8_t> msg1 =
            Botan::hex_decode_locked("446F6E27742075736520706C61696E20434243206D6F6465");
         Botan::secure_vector<uint8_t> msg2 =
            Botan::hex_decode_locked("49562063617272796F766572");
         Botan::secure_vector<uint8_t> msg3 =
            Botan::hex_decode_locked("49562063617272796F76657232");

         enc->set_key(key);
         dec->set_key(key);

         enc->start(iv);
         enc->finish(msg1);
         result.test_eq("First ciphertext", msg1,
                        "9BDD7300E0CB61CA71FFF957A71605DB6836159C36781246A1ADF50982757F4B");

         enc->start();
         enc->finish(msg2);

         result.test_eq("Second ciphertext", msg2,
                        "AA8D682958A4A044735DAC502B274DB2");

         enc->start();
         enc->finish(msg3);

         result.test_eq("Third ciphertext", msg3,
                        "1241B9976F73051BCF809525D6E86C25");

         dec->start(iv);
         dec->finish(msg1);

         dec->start();
         dec->finish(msg2);

         dec->start();
         dec->finish(msg3);
         result.test_eq("Third plaintext", msg3, "49562063617272796F76657232");

#endif
         return result;
         }

      Test::Result test_cfb_iv_carry()
         {
         Test::Result result("CFB IV carry");
#if defined(BOTAN_HAS_MODE_CFB) && defined(BOTAN_HAS_AES)
         std::unique_ptr<Botan::Cipher_Mode> enc(
            Botan::get_cipher_mode("AES-128/CFB(8)", Botan::ENCRYPTION));
         std::unique_ptr<Botan::Cipher_Mode> dec(
            Botan::get_cipher_mode("AES-128/CFB(8)", Botan::DECRYPTION));

         const std::vector<uint8_t> key(16, 0xAA);
         const std::vector<uint8_t> iv(16, 0xAB);

         Botan::secure_vector<uint8_t> msg1 = Botan::hex_decode_locked("ABCDEF01234567");
         Botan::secure_vector<uint8_t> msg2 = Botan::hex_decode_locked("0000123456ABCDEF");
         Botan::secure_vector<uint8_t> msg3 = Botan::hex_decode_locked("012345");

         enc->set_key(key);
         dec->set_key(key);

         enc->start(iv);
         enc->finish(msg1);
         result.test_eq("First ciphertext", msg1, "a51522387c4c9b");

         enc->start();
         enc->finish(msg2);

         result.test_eq("Second ciphertext", msg2, "105457dc2e0649d4");

         enc->start();
         enc->finish(msg3);

         result.test_eq("Third ciphertext", msg3, "53bd65");

         dec->start(iv);
         dec->finish(msg1);
         result.test_eq("First plaintext", msg1, "ABCDEF01234567");

         dec->start();
         dec->finish(msg2);
         result.test_eq("Second plaintext", msg2, "0000123456ABCDEF");

         dec->start();
         dec->finish(msg3);
         result.test_eq("Third plaintext", msg3, "012345");
#endif
         return result;
         }

      Test::Result test_ctr_iv_carry()
         {
         Test::Result result("CTR IV carry");
#if defined(BOTAN_HAS_CTR_BE) && defined(BOTAN_HAS_AES)

         std::unique_ptr<Botan::Cipher_Mode> enc(
            Botan::get_cipher_mode("AES-128/CTR-BE", Botan::ENCRYPTION));
         std::unique_ptr<Botan::Cipher_Mode> dec(
            Botan::get_cipher_mode("AES-128/CTR-BE", Botan::DECRYPTION));

         const std::vector<uint8_t> key =
            Botan::hex_decode("2B7E151628AED2A6ABF7158809CF4F3C");
         const std::vector<uint8_t> iv =
            Botan::hex_decode("F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF");

         enc->set_key(key);
         dec->set_key(key);

         const std::vector<std::string> exp_ciphertext = {
            "EC",
            "8CDF",
            "739860",
            "7CB0F2D2",
            "1675EA9EA1",
            "E4362B7C3C67",
            "73516318A077D7",
            "FC5073AE6A2CC378",
            "7889374FBEB4C81B17",
            "BA6C44E89C399FF0F198C",
         };

         for(size_t i = 1; i != 10; ++i)
            {
            if(i == 1)
               {
               enc->start(iv);
               dec->start(iv);
               }
            else
               {
               enc->start();
               dec->start();
               }

            Botan::secure_vector<uint8_t> msg(i, 0);
            enc->finish(msg);

            result.test_eq("Ciphertext", msg, exp_ciphertext[i-1].c_str());

            dec->finish(msg);

            for(size_t j = 0; j != msg.size(); ++j)
               result.test_eq("Plaintext zeros", static_cast<size_t>(msg[j]), 0);

            }
#endif
         return result;
         }
   };


BOTAN_REGISTER_TEST("iv_carryover", Cipher_Mode_IV_Carry_Tests);

#endif

}