1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
#include "tests.h"
#include <botan/pubkey.h>
#include <botan/ecdsa.h>
#include <botan/rsa.h>
#include <botan/x509cert.h>
#include <botan/oids.h>
#include <botan/mceliece.h>
#include <botan/mce_kem.h>
#include <botan/hex.h>
#include <iostream>
#include <memory>
using namespace Botan;
#define CHECK_MESSAGE(expr, print) do {if(!(expr)) {std::cout << print << "\n"; return 1;} }while(0)
#define CHECK(expr) do {if(!(expr)) { std::cout << #expr << "\n"; return 1; } }while(0)
namespace {
const size_t MCE_RUNS = 10;
size_t test_mceliece_message_parts(RandomNumberGenerator& rng, size_t code_length, size_t error_weight)
{
secure_vector<gf2m> err_pos1 = create_random_error_positions(code_length, error_weight, rng);
secure_vector<byte> message1((code_length+7)/8);
rng.randomize(&message1[0], message1.size() - 1);
mceliece_message_parts parts1(err_pos1, message1, code_length);
secure_vector<byte> err_vec1 = parts1.get_error_vector();
secure_vector<byte> concat1 = parts1.get_concat();
mceliece_message_parts parts2( &concat1[0], concat1.size(), code_length);
secure_vector<byte> err_vec2 = parts2.get_error_vector();
if(err_vec1 != err_vec2)
{
std::cout << "error with error vector from message parts" << std::endl;
return 1;
}
secure_vector<byte> message2 = parts2.get_message_word();
if(message1 != message2)
{
std::cout << "error with message word from message parts" << std::endl;
return 1;
}
return 0;
}
size_t test_mceliece_kem(RandomNumberGenerator& rng, u32bit code_length, u32bit t)
{
size_t fails = 0;
McEliece_PrivateKey sk1(rng, code_length, t);
McEliece_PublicKey& pk1 = dynamic_cast<McEliece_PrivateKey&>(sk1);
const std::vector<byte> pk_enc = pk1.x509_subject_public_key();
const secure_vector<byte> sk_enc = sk1.pkcs8_private_key();
McEliece_PublicKey pk(pk_enc);
McEliece_PrivateKey sk(sk_enc);
if(pk1 != pk)
{
std::cout << "decoded McEliece public key differs from original one" << std::endl;
++fails;
}
if(sk1 != sk)
{
std::cout << "decoded McEliece private key differs from original one" << std::endl;
++fails;
}
if(!sk.check_key(rng, false))
{
std::cout << "error calling check key on McEliece key" << std::endl;
++fails;
}
McEliece_KEM_Encryptor pub_op(pk);
McEliece_KEM_Decryptor priv_op(sk);
for(size_t i = 0; i != MCE_RUNS; i++)
{
const std::pair<secure_vector<byte>,secure_vector<byte> > ciphertext__sym_key = pub_op.encrypt(rng);
const secure_vector<byte>& ciphertext = ciphertext__sym_key.first;
const secure_vector<byte>& sym_key_encr = ciphertext__sym_key.second;
const secure_vector<byte> sym_key_decr = priv_op.decrypt(&ciphertext[0], ciphertext.size());
if(sym_key_encr != sym_key_decr)
{
std::cout << "mce KEM test failed, error during encryption/decryption" << std::endl;
++fails;
}
#if 0
// takes a long time:
for(size_t j = 0; j < code_length; j++)
{
// flip the j-th bit in the ciphertext
secure_vector<byte> wrong_ct(ciphertext);
size_t byte_pos = j/8;
size_t bit_pos = j % 8;
wrong_ct[byte_pos] ^= 1 << bit_pos;
try
{
secure_vector<byte> decrypted = priv_op.decrypt(&wrong_ct[0], wrong_ct.size());
}
catch(const Integrity_Failure)
{
continue;
}
std::cout << "manipulation in ciphertext not detected" << std::endl;
err_cnt++;
}
#endif
}
return fails;
}
size_t test_mceliece_raw(RandomNumberGenerator& rng, size_t code_length, size_t t)
{
McEliece_PrivateKey sk(rng, code_length, t);
McEliece_PublicKey* p_pk = dynamic_cast<McEliece_PublicKey*>(&sk);
McEliece_Private_Operation priv_op(sk);
McEliece_Public_Operation pub_op(*p_pk, code_length );
size_t err_cnt = 0;
for(size_t i = 0; i != MCE_RUNS; i++)
{
secure_vector<byte> plaintext((p_pk->get_message_word_bit_length()+7)/8);
rng.randomize(&plaintext[0], plaintext.size() - 1);
secure_vector<gf2m> err_pos = create_random_error_positions(p_pk->get_code_length(), p_pk->get_t(), rng);
mceliece_message_parts parts(err_pos, plaintext, p_pk->get_code_length());
secure_vector<byte> message_and_error_input = parts.get_concat();
secure_vector<byte> ciphertext = pub_op.encrypt(&message_and_error_input[0], message_and_error_input.size(), rng);
//std::cout << "ciphertext byte length = " << ciphertext.size() << std::endl;
secure_vector<byte> message_and_error_output = priv_op.decrypt(&ciphertext[0], ciphertext.size() );
if(message_and_error_input != message_and_error_output)
{
mceliece_message_parts combined(&message_and_error_input[0], message_and_error_input.size(), code_length);
secure_vector<byte> orig_pt = combined.get_message_word();
secure_vector<byte> orig_ev = combined.get_error_vector();
mceliece_message_parts decr_combined(&message_and_error_output[0], message_and_error_output.size(), code_length);
secure_vector<byte> decr_pt = decr_combined.get_message_word();
secure_vector<byte> decr_ev = decr_combined.get_error_vector();
std::cout << "ciphertext = " << hex_encode(ciphertext) << std::endl;
std::cout << "original plaintext = " << hex_encode(orig_pt) << std::endl;
std::cout << "original error vector = " << hex_encode(orig_ev) << std::endl;
std::cout << "decrypted plaintext = " << hex_encode(decr_pt) << std::endl;
std::cout << "decrypted error vector = " << hex_encode(decr_ev) << std::endl;
err_cnt++;
std::cout << "mce test failed, error during encryption/decryption" << std::endl;
std::cout << "err pos during encryption = ";
for(size_t j = 0; j < err_pos.size(); j++) std::printf("%u, ", err_pos[j]);
printf("\n");
return 1;
continue;
}
}
return err_cnt;
}
}
size_t test_mceliece()
{
auto& rng = test_rng();
size_t err_cnt = 0;
size_t params__n__t_min_max[] = {
256, 5, 15,
512, 5, 33,
1024, 15, 35,
2048, 33, 50,
2960, 50, 56,
6624, 110, 115
};
size_t tests = 0;
for(size_t i = 0; i < sizeof(params__n__t_min_max)/sizeof(params__n__t_min_max[0]); i+=3)
{
size_t code_length = params__n__t_min_max[i];
for(size_t t = params__n__t_min_max[i+1]; t <= params__n__t_min_max[i+2]; t++)
{
//std::cout << "testing parameters n = " << code_length << ", t = " << t << std::endl;
try
{
err_cnt += test_mceliece_message_parts(rng, code_length, t);
}
catch(std::exception& e)
{
std::cout << e.what();
err_cnt++;
}
try
{
err_cnt += test_mceliece_raw(rng, code_length, t);
}
catch(std::exception& e)
{
std::cout << e.what();
err_cnt++;
}
try
{
err_cnt += test_mceliece_kem(rng, code_length, t);
}
catch(std::exception& e)
{
std::cout << e.what();
err_cnt++;
}
tests += 3;
}
}
test_report("McEliece", tests, err_cnt);
return err_cnt;
}
|