1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/*
* (C) 2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include "tests.h"
#if defined(BOTAN_HAS_MCELIECE)
#include <botan/mceliece.h>
#include <botan/mce_kem.h>
#include <botan/hmac_drbg.h>
#include <botan/hash.h>
#include <botan/hex.h>
#include <iostream>
#include <fstream>
using namespace Botan;
namespace {
std::string hash_bytes(const byte b[], size_t len)
{
std::unique_ptr<HashFunction> hash(HashFunction::create("SHA-256"));
hash->update(b, len);
return hex_encode(hash->final());
}
template<typename A>
std::string hash_bytes(const std::vector<byte, A>& v)
{
return hash_bytes(v.data(), v.size());
}
size_t mce_test(const std::string& key_seed_hex,
size_t n, size_t t,
const std::string& exp_fingerprint_pub,
const std::string& exp_fingerprint_priv,
const std::string& encrypt_rng_seed_hex,
const std::string& ct_hex,
const std::string& shared_key_hex)
{
const secure_vector<byte> keygen_seed = hex_decode_locked(key_seed_hex);
const secure_vector<byte> encrypt_seed = hex_decode_locked(encrypt_rng_seed_hex);
Test_State _test;
HMAC_DRBG rng("HMAC(SHA-384)");
rng.add_entropy(keygen_seed.data(), keygen_seed.size());
McEliece_PrivateKey mce_priv(rng, n, t);
const std::string f_pub = hash_bytes(mce_priv.x509_subject_public_key());
const std::string f_priv = hash_bytes(mce_priv.pkcs8_private_key());
BOTAN_TEST(f_pub, exp_fingerprint_pub, "Public fingerprint");
BOTAN_TEST(f_priv, exp_fingerprint_priv, "Private fingerprint");
rng.clear();
rng.add_entropy(encrypt_seed.data(), encrypt_seed.size());
McEliece_KEM_Encryptor kem_enc(mce_priv);
McEliece_KEM_Decryptor kem_dec(mce_priv);
const std::pair<secure_vector<byte>,secure_vector<byte> > ciphertext__sym_key = kem_enc.encrypt(rng);
const secure_vector<byte>& ciphertext = ciphertext__sym_key.first;
const secure_vector<byte>& sym_key_encr = ciphertext__sym_key.second;
const secure_vector<byte> sym_key_decr = kem_dec.decrypt(ciphertext.data(), ciphertext.size());
BOTAN_TEST(ct_hex, hex_encode(ciphertext), "Ciphertext");
BOTAN_TEST(hex_encode(sym_key_encr), shared_key_hex, "Encrypted key");
BOTAN_TEST(hex_encode(sym_key_decr), shared_key_hex, "Decrypted key");
return _test.failed();
}
}
size_t test_mce()
{
std::ifstream vec(TEST_DATA_DIR "/pubkey/mce.vec");
return run_tests_bb(vec, "McElieceSeed", "Ciphertext", true,
[](std::map<std::string, std::string> m) -> size_t
{
return mce_test(m["McElieceSeed"],
to_u32bit(m["KeyN"]),
to_u32bit(m["KeyT"]),
m["PublicKeyFingerprint"],
m["PrivateKeyFingerprint"],
m["EncryptPRNGSeed"],
m["Ciphertext"],
m["SharedKey"]);
});
}
#else
SKIP_TEST(mce);
#endif
|