1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/*
* Turing
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/turing.h>
#include <botan/loadstor.h>
#include <botan/rotate.h>
#include <botan/internal/xor_buf.h>
namespace Botan {
namespace {
/*
* Perform an N-way PHT
*/
inline void PHT(u32bit buf[], u32bit buf_size)
{
u32bit sum = 0;
for(u32bit i = 0; i < buf_size - 1; ++i)
sum += buf[i];
buf[buf_size-1] += sum;
sum = buf[buf_size-1];
for(u32bit i = 0; i < buf_size - 1; ++i)
buf[i] += sum;
}
}
/*
* Combine cipher stream with message
*/
void Turing::cipher(const byte in[], byte out[], u32bit length)
{
while(length >= buffer.size() - position)
{
xor_buf(out, in, buffer.begin() + position, buffer.size() - position);
length -= (buffer.size() - position);
in += (buffer.size() - position);
out += (buffer.size() - position);
generate();
}
xor_buf(out, in, buffer.begin() + position, length);
position += length;
}
/*
* Generate cipher stream
*/
void Turing::generate()
{
// Table for Turing's polynomial multiplication
static const u32bit MULT_TAB[256] = {
0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9, 0x97AC41D1, 0x478702B6,
0x7AFAC71F, 0xAAD18478, 0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746,
0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697, 0xC62A4993, 0x16010AF4,
0x2B7CCF5D, 0xFB578C3A, 0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB,
0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5, 0x32938AAD, 0xE2B8C9CA,
0xDFC50C63, 0x0FEE4F04, 0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2,
0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613, 0xA2411084, 0x726A53E3,
0x4F17964A, 0x9F3CD52D, 0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC,
0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51, 0x90D29A29, 0x40F9D94E,
0x7D841CE7, 0xADAF5F80, 0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE,
0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F, 0xCFA869D6, 0x1F832AB1,
0x22FEEF18, 0xF2D5AC7F, 0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE,
0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90, 0x3B11AAE8, 0xEB3AE98F,
0xD6472C26, 0x066C6F41, 0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC,
0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D, 0x6A97A2AA, 0xBABCE1CD,
0x87C12464, 0x57EA6703, 0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2,
0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14, 0x9950BA6C, 0x497BF90B,
0x74063CA2, 0xA42D7FC5, 0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB,
0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A, 0xC8D6B22E, 0x18FDF149,
0x258034E0, 0xF5AB7787, 0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656,
0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568, 0x3C6F7110, 0xEC443277,
0xD139F7DE, 0x0112B4B9, 0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748,
0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699, 0xB008500E, 0x60231369,
0x5D5ED6C0, 0x8D7595A7, 0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476,
0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB, 0x829BDAA3, 0x52B099C4,
0x6FCD5C6D, 0xBFE61F0A, 0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34,
0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5, 0x1249408A, 0xC26203ED,
0xFF1FC644, 0x2F348523, 0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2,
0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC, 0xE6F083B4, 0x36DBC0D3,
0x0BA6057A, 0xDB8D461D, 0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0,
0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61, 0xB7768BF6, 0x675DC891,
0x5A200D38, 0x8A0B4E5F, 0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E,
0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E, 0x8B19FAE6, 0x5B32B981,
0x664F7C28, 0xB6643F4F, 0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71,
0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0, 0xDA9FF2A4, 0x0AB4B1C3,
0x37C9746A, 0xE7E2370D, 0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC,
0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2, 0x2E26319A, 0xFE0D72FD,
0xC370B754, 0x135BF433, 0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5,
0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24, 0xBEF4ABB3, 0x6EDFE8D4,
0x53A22D7D, 0x83896E1A, 0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB,
0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566, 0x8C67211E, 0x5C4C6279,
0x6131A7D0, 0xB11AE4B7, 0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658 };
/*
I tried an implementation without precomputed LFSR offsets, since
I thought that might allow (especially on x86-64) the use of leal to
compute all the offsets.. However on my Core2 with GCC 4.3 it
turned out significantly slower (238 Mib/s, versus 300 Mib/s
with precomputed offsets)
I also tried using byte vs u32bit for the offset variable (since
x86 memory addressing modes can be odd), but it made things even
slower (186 Mib/s)
*/
static const byte OFFSETS[221] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 16,
5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 2, 3, 4,
10, 11, 12, 13, 14, 15, 16, 0, 1, 5, 7, 8, 9,
15, 16, 0, 1, 2, 3, 4, 5, 6, 10, 12, 13, 14,
3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 0, 1, 2,
8, 9, 10, 11, 12, 13, 14, 15, 16, 3, 5, 6, 7,
13, 14, 15, 16, 0, 1, 2, 3, 4, 8, 10, 11, 12,
1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 16, 0,
6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 3, 4, 5,
11, 12, 13, 14, 15, 16, 0, 1, 2, 6, 8, 9, 10,
16, 0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15,
4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 1, 2, 3,
9, 10, 11, 12, 13, 14, 15, 16, 0, 4, 6, 7, 8,
14, 15, 16, 0, 1, 2, 3, 4, 5, 9, 11, 12, 13,
2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 0, 1,
7, 8, 9, 10, 11, 12, 13, 14, 15, 2, 4, 5, 6,
12, 13, 14, 15, 16, 0, 1, 2, 3, 7, 9, 10, 11 };
for(u32bit j = 0; j != 17; ++j)
{
const byte* R_off = OFFSETS + 13*j;
u32bit R0 = R[R_off[0]];
u32bit R1 = R[R_off[1]];
u32bit R2 = R[R_off[2]];
u32bit R3 = R[R_off[3]];
u32bit R4 = R[R_off[4]];
const u32bit R5 = R[R_off[5]];
const u32bit R6 = R[R_off[6]];
const u32bit R7 = R[R_off[7]];
const u32bit R8 = R[R_off[8]];
const u32bit R9 = R[R_off[9]];
const u32bit R10 = R[R_off[10]];
const u32bit R11 = R[R_off[11]];
const u32bit R12 = R[R_off[12]];
R[R_off[0]] = R0 = ((R0 << 8) ^ MULT_TAB[(R0 >> 24) & 0xFF]) ^ R11 ^ R4;
u32bit A = R0;
u32bit B = R10;
u32bit C = R7;
u32bit D = R2;
u32bit E = R1;
E += A + B + C + D;
A += E;
B += E;
C += E;
D += E;
A = S0[get_byte(0, A)] ^ S1[get_byte(1, A)] ^
S2[get_byte(2, A)] ^ S3[get_byte(3, A)];
B = S0[get_byte(1, B)] ^ S1[get_byte(2, B)] ^
S2[get_byte(3, B)] ^ S3[get_byte(0, B)];
C = S0[get_byte(2, C)] ^ S1[get_byte(3, C)] ^
S2[get_byte(0, C)] ^ S3[get_byte(1, C)];
D = S0[get_byte(3, D)] ^ S1[get_byte(0, D)] ^
S2[get_byte(1, D)] ^ S3[get_byte(2, D)];
E = S0[get_byte(0, E)] ^ S1[get_byte(1, E)] ^
S2[get_byte(2, E)] ^ S3[get_byte(3, E)];
E += A + B + C + D;
A += E;
B += E;
C += E;
D += E;
R[R_off[1]] = R1 = ((R1 << 8) ^ MULT_TAB[(R1 >> 24) & 0xFF]) ^ R12 ^ R5;
R[R_off[2]] = R2 = ((R2 << 8) ^ MULT_TAB[(R2 >> 24) & 0xFF]) ^ R0 ^ R6;
R[R_off[3]] = ((R3 << 8) ^ MULT_TAB[(R3 >> 24) & 0xFF]) ^ R1 ^ R7;
E += R4;
R[R_off[4]] = ((R4 << 8) ^ MULT_TAB[(R4 >> 24) & 0xFF]) ^ R2 ^ R8;
A += R1;
B += R12;
C += R9;
D += R5;
store_be(A, buffer + 20*j + 0);
store_be(B, buffer + 20*j + 4);
store_be(C, buffer + 20*j + 8);
store_be(D, buffer + 20*j + 12);
store_be(E, buffer + 20*j + 16);
}
position = 0;
}
/*
* Turing's byte mixing step
*/
u32bit Turing::fixedS(u32bit W)
{
for(u32bit j = 0; j != 4; ++j)
{
byte B = SBOX[get_byte(j, W)];
W ^= rotate_left(Q_BOX[B], j*8);
W &= rotate_right(0x00FFFFFF, j*8);
W |= B << (24-j*8);
}
return W;
}
/*
* Turing Key Schedule
*/
void Turing::key_schedule(const byte key[], u32bit length)
{
K.resize(length / 4);
for(u32bit j = 0; j != length; ++j)
K[j/4] = (K[j/4] << 8) + key[j];
for(u32bit j = 0; j != K.size(); ++j)
K[j] = fixedS(K[j]);
PHT(K, K.size());
for(u32bit i = 0; i != 256; ++i)
{
u32bit W0 = 0, C0 = i;
u32bit W1 = 0, C1 = i;
u32bit W2 = 0, C2 = i;
u32bit W3 = 0, C3 = i;
for(u32bit j = 0; j < K.size(); ++j)
{
C0 = SBOX[get_byte(0, K[j]) ^ C0];
C1 = SBOX[get_byte(1, K[j]) ^ C1];
C2 = SBOX[get_byte(2, K[j]) ^ C2];
C3 = SBOX[get_byte(3, K[j]) ^ C3];
W0 ^= rotate_left(Q_BOX[C0], j);
W1 ^= rotate_left(Q_BOX[C1], j + 8);
W2 ^= rotate_left(Q_BOX[C2], j + 16);
W3 ^= rotate_left(Q_BOX[C3], j + 24);
}
S0[i] = (W0 & 0x00FFFFFF) | (C0 << 24);
S1[i] = (W1 & 0xFF00FFFF) | (C1 << 16);
S2[i] = (W2 & 0xFFFF00FF) | (C2 << 8);
S3[i] = (W3 & 0xFFFFFF00) | C3;
}
set_iv(0, 0);
}
/*
* Resynchronization
*/
void Turing::set_iv(const byte iv[], u32bit length)
{
if(!valid_iv_length(length))
throw Invalid_IV_Length(name(), length);
SecureVector<u32bit> IV(length / 4);
for(u32bit i = 0; i != length; ++i)
IV[i/4] = (IV[i/4] << 8) + iv[i];
for(u32bit i = 0; i != IV.size(); ++i)
R[i] = IV[i] = fixedS(IV[i]);
for(u32bit i = 0; i != K.size(); ++i)
R[i+IV.size()] = K[i];
R[K.size() + IV.size()] = (0x010203 << 8) | (K.size() << 4) | IV.size();
for(u32bit i = K.size() + IV.size() + 1; i != 17; ++i)
{
const u32bit W = R[i-K.size()-IV.size()-1] + R[i-1];
R[i] = S0[get_byte(0, W)] ^ S1[get_byte(1, W)] ^
S2[get_byte(2, W)] ^ S3[get_byte(3, W)];
}
PHT(R, 17);
generate();
}
/*
* Clear memory of sensitive data
*/
void Turing::clear()
{
zeroise(S0);
zeroise(S1);
zeroise(S2);
zeroise(S3);
zeroise(buffer);
position = 0;
}
}
|