aboutsummaryrefslogtreecommitdiffstats
path: root/src/pubkey/rsa/rsa.h
blob: 0942d92ad4c2a6ada4a79394a9e52ef017536dc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* RSA
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/

#ifndef BOTAN_RSA_H__
#define BOTAN_RSA_H__

#include <botan/if_algo.h>
#include <botan/pk_ops.h>
#include <botan/reducer.h>
#include <botan/blinding.h>

namespace Botan {

/**
* RSA Public Key
*/
class BOTAN_DLL RSA_PublicKey : public virtual IF_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "RSA"; }

      RSA_PublicKey(const AlgorithmIdentifier& alg_id,
                    const secure_vector<byte>& key_bits) :
         IF_Scheme_PublicKey(alg_id, key_bits)
         {}

      /**
      * Create a RSA_PublicKey
      * @arg n the modulus
      * @arg e the exponent
      */
      RSA_PublicKey(const BigInt& n, const BigInt& e) :
         IF_Scheme_PublicKey(n, e)
         {}

   protected:
      RSA_PublicKey() {}
   };

/**
* RSA Private Key
*/
class BOTAN_DLL RSA_PrivateKey : public RSA_PublicKey,
                                 public IF_Scheme_PrivateKey
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool) const;

      RSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                     const secure_vector<byte>& key_bits,
                     RandomNumberGenerator& rng) :
         IF_Scheme_PrivateKey(rng, alg_id, key_bits) {}

      /**
      * Construct a private key from the specified parameters.
      * @param rng a random number generator
      * @param p the first prime
      * @param q the second prime
      * @param e the exponent
      * @param d if specified, this has to be d with
      * exp * d = 1 mod (p - 1, q - 1). Leave it as 0 if you wish to
      * the constructor to calculate it.
      * @param n if specified, this must be n = p * q. Leave it as 0
      * if you wish to the constructor to calculate it.
      */
      RSA_PrivateKey(RandomNumberGenerator& rng,
                     const BigInt& p, const BigInt& q,
                     const BigInt& e, const BigInt& d = 0,
                     const BigInt& n = 0) :
         IF_Scheme_PrivateKey(rng, p, q, e, d, n) {}

      /**
      * Create a new private key with the specified bit length
      * @param rng the random number generator to use
      * @param bits the desired bit length of the private key
      * @param exp the public exponent to be used
      */
      RSA_PrivateKey(RandomNumberGenerator& rng,
                     size_t bits, size_t exp = 65537);
   };

/**
* RSA private (decrypt/sign) operation
*/
class BOTAN_DLL RSA_Private_Operation : public PK_Ops::Signature,
                                        public PK_Ops::Decryption
   {
   public:
      RSA_Private_Operation(const RSA_PrivateKey& rsa);

      size_t max_input_bits() const { return (n.bits() - 1); }

      secure_vector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);

      secure_vector<byte> decrypt(const byte msg[], size_t msg_len);

   private:
      BigInt private_op(const BigInt& m) const;

      const BigInt& n;
      const BigInt& q;
      const BigInt& c;
      Fixed_Exponent_Power_Mod powermod_e_n, powermod_d1_p, powermod_d2_q;
      Modular_Reducer mod_p;
      Blinder blinder;
   };

/**
* RSA public (encrypt/verify) operation
*/
class BOTAN_DLL RSA_Public_Operation : public PK_Ops::Verification,
                                       public PK_Ops::Encryption
   {
   public:
      RSA_Public_Operation(const RSA_PublicKey& rsa) :
         n(rsa.get_n()), powermod_e_n(rsa.get_e(), rsa.get_n())
         {}

      size_t max_input_bits() const { return (n.bits() - 1); }
      bool with_recovery() const { return true; }

      secure_vector<byte> encrypt(const byte msg[], size_t msg_len,
                                 RandomNumberGenerator&)
         {
         BigInt m(msg, msg_len);
         return BigInt::encode_1363(public_op(m), n.bytes());
         }

      secure_vector<byte> verify_mr(const byte msg[], size_t msg_len)
         {
         BigInt m(msg, msg_len);
         return BigInt::encode_locked(public_op(m));
         }

   private:
      BigInt public_op(const BigInt& m) const
         {
         if(m >= n)
            throw Invalid_Argument("RSA public op - input is too large");
         return powermod_e_n(m);
         }

      const BigInt& n;
      Fixed_Exponent_Power_Mod powermod_e_n;
   };

}

#endif