1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* Public Key Base
* (C) 1999-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/pubkey.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/bigint.h>
#include <botan/parsing.h>
#include <botan/libstate.h>
#include <botan/engine.h>
#include <botan/lookup.h>
#include <botan/internal/bit_ops.h>
#include <memory>
namespace Botan {
/*
* PK_Encryptor_EME Constructor
*/
PK_Encryptor_EME::PK_Encryptor_EME(const Public_Key& key,
const std::string& eme_name)
{
Algorithm_Factory::Engine_Iterator i(global_state().algorithm_factory());
while(const Engine* engine = i.next())
{
op = engine->get_encryption_op(key);
if(op)
break;
}
if(!op)
throw Lookup_Error("PK_Encryptor_EME: No working engine for " +
key.algo_name());
eme = get_eme(eme_name);
}
/*
* Encrypt a message
*/
SecureVector<byte>
PK_Encryptor_EME::enc(const byte msg[],
u32bit length,
RandomNumberGenerator& rng) const
{
SecureVector<byte> message;
if(eme)
message = eme->encode(msg, length, op->max_input_bits(), rng);
else
message.set(msg, length);
if(8*(message.size() - 1) + high_bit(message[0]) > op->max_input_bits())
throw Invalid_Argument("PK_Encryptor_EME: Input is too large");
return op->encrypt(message, message.size(), rng);
}
/*
* Return the max size, in bytes, of a message
*/
u32bit PK_Encryptor_EME::maximum_input_size() const
{
if(!eme)
return (op->max_input_bits() / 8);
else
return eme->maximum_input_size(op->max_input_bits());
}
/*
* PK_Decryptor_EME Constructor
*/
PK_Decryptor_EME::PK_Decryptor_EME(const Private_Key& key,
const std::string& eme_name)
{
Algorithm_Factory::Engine_Iterator i(global_state().algorithm_factory());
while(const Engine* engine = i.next())
{
op = engine->get_decryption_op(key);
if(op)
break;
}
if(!op)
throw Lookup_Error("PK_Decryptor_EME: No working engine for " +
key.algo_name());
eme = get_eme(eme_name);
}
/*
* Decrypt a message
*/
SecureVector<byte> PK_Decryptor_EME::dec(const byte msg[],
u32bit length) const
{
try {
SecureVector<byte> decrypted = op->decrypt(msg, length);
if(eme)
return eme->decode(decrypted, op->max_input_bits());
else
return decrypted;
}
catch(Invalid_Argument)
{
throw Decoding_Error("PK_Decryptor_EME: Input is invalid");
}
}
/*
* PK_Signer Constructor
*/
PK_Signer::PK_Signer(const Private_Key& key,
const std::string& emsa_name,
Signature_Format format,
Fault_Protection prot)
{
Algorithm_Factory::Engine_Iterator i(global_state().algorithm_factory());
op = 0;
verify_op = 0;
while(const Engine* engine = i.next())
{
if(!op)
op = engine->get_signature_op(key);
if(!verify_op && prot == ENABLE_FAULT_PROTECTION)
verify_op = engine->get_verify_op(key);
if(op && (verify_op || prot == DISABLE_FAULT_PROTECTION))
break;
}
if(!op || (!verify_op && prot == ENABLE_FAULT_PROTECTION))
throw Lookup_Error("PK_Signer: No working engine for " +
key.algo_name());
emsa = get_emsa(emsa_name);
sig_format = format;
}
/*
* Sign a message
*/
SecureVector<byte> PK_Signer::sign_message(const byte msg[], u32bit length,
RandomNumberGenerator& rng)
{
update(msg, length);
return signature(rng);
}
/*
* Add more to the message to be signed
*/
void PK_Signer::update(const byte in[], u32bit length)
{
emsa->update(in, length);
}
/*
* Check the signature we just created, to help prevent fault attacks
*/
bool PK_Signer::self_test_signature(const MemoryRegion<byte>& msg,
const MemoryRegion<byte>& sig) const
{
if(verify_op->with_recovery())
{
SecureVector<byte> recovered =
verify_op->verify_mr(&sig[0], sig.size());
if(msg.size() > recovered.size())
{
u32bit extra_0s = msg.size() - recovered.size();
for(size_t i = 0; i != extra_0s; ++i)
if(msg[i] != 0)
return false;
return same_mem(&msg[extra_0s], &recovered[0], recovered.size());
}
return (recovered == msg);
}
else
return verify_op->verify(&msg[0], msg.size(),
&sig[0], sig.size());
}
/*
* Create a signature
*/
SecureVector<byte> PK_Signer::signature(RandomNumberGenerator& rng)
{
SecureVector<byte> encoded = emsa->encoding_of(emsa->raw_data(),
op->max_input_bits(),
rng);
SecureVector<byte> plain_sig = op->sign(encoded, encoded.size(), rng);
if(verify_op && !self_test_signature(encoded, plain_sig))
throw Internal_Error("PK_Signer consistency check failed");
if(op->message_parts() == 1 || sig_format == IEEE_1363)
return plain_sig;
if(sig_format == DER_SEQUENCE)
{
if(plain_sig.size() % op->message_parts())
throw Encoding_Error("PK_Signer: strange signature size found");
const u32bit SIZE_OF_PART = plain_sig.size() / op->message_parts();
std::vector<BigInt> sig_parts(op->message_parts());
for(u32bit j = 0; j != sig_parts.size(); ++j)
sig_parts[j].binary_decode(plain_sig + SIZE_OF_PART*j, SIZE_OF_PART);
return DER_Encoder()
.start_cons(SEQUENCE)
.encode_list(sig_parts)
.end_cons()
.get_contents();
}
else
throw Encoding_Error("PK_Signer: Unknown signature format " +
std::to_string(sig_format));
}
/*
* PK_Verifier Constructor
*/
PK_Verifier::PK_Verifier(const Public_Key& key,
const std::string& emsa_name,
Signature_Format format)
{
Algorithm_Factory::Engine_Iterator i(global_state().algorithm_factory());
while(const Engine* engine = i.next())
{
op = engine->get_verify_op(key);
if(op)
break;
}
if(!op)
throw Lookup_Error("PK_Verifier: No working engine for " +
key.algo_name());
emsa = get_emsa(emsa_name);
sig_format = format;
}
/*
* Set the signature format
*/
void PK_Verifier::set_input_format(Signature_Format format)
{
if(op->message_parts() == 1 && format != IEEE_1363)
throw Invalid_State("PK_Verifier: This algorithm always uses IEEE 1363");
sig_format = format;
}
/*
* Verify a message
*/
bool PK_Verifier::verify_message(const byte msg[], u32bit msg_length,
const byte sig[], u32bit sig_length)
{
update(msg, msg_length);
return check_signature(sig, sig_length);
}
/*
* Append to the message
*/
void PK_Verifier::update(const byte in[], u32bit length)
{
emsa->update(in, length);
}
/*
* Check a signature
*/
bool PK_Verifier::check_signature(const byte sig[], u32bit length)
{
try {
if(sig_format == IEEE_1363)
return validate_signature(emsa->raw_data(), sig, length);
else if(sig_format == DER_SEQUENCE)
{
BER_Decoder decoder(sig, length);
BER_Decoder ber_sig = decoder.start_cons(SEQUENCE);
u32bit count = 0;
SecureVector<byte> real_sig;
while(ber_sig.more_items())
{
BigInt sig_part;
ber_sig.decode(sig_part);
real_sig.append(BigInt::encode_1363(sig_part,
op->message_part_size()));
++count;
}
if(count != op->message_parts())
throw Decoding_Error("PK_Verifier: signature size invalid");
return validate_signature(emsa->raw_data(),
real_sig, real_sig.size());
}
else
throw Decoding_Error("PK_Verifier: Unknown signature format " +
std::to_string(sig_format));
}
catch(Invalid_Argument) { return false; }
}
/*
* Verify a signature
*/
bool PK_Verifier::validate_signature(const MemoryRegion<byte>& msg,
const byte sig[], u32bit sig_len)
{
if(op->with_recovery())
{
SecureVector<byte> output_of_key = op->verify_mr(sig, sig_len);
return emsa->verify(output_of_key, msg, op->max_input_bits());
}
else
{
Null_RNG rng;
SecureVector<byte> encoded =
emsa->encoding_of(msg, op->max_input_bits(), rng);
return op->verify(encoded, encoded.size(), sig, sig_len);
}
}
/*
* PK_Key_Agreement Constructor
*/
PK_Key_Agreement::PK_Key_Agreement(const PK_Key_Agreement_Key& key,
const std::string& kdf_name)
{
Algorithm_Factory::Engine_Iterator i(global_state().algorithm_factory());
while(const Engine* engine = i.next())
{
op = engine->get_key_agreement_op(key);
if(op)
break;
}
if(!op)
throw Lookup_Error("PK_Key_Agreement: No working engine for " +
key.algo_name());
kdf = get_kdf(kdf_name);
}
SymmetricKey PK_Key_Agreement::derive_key(u32bit key_len, const byte in[],
u32bit in_len, const byte params[],
u32bit params_len) const
{
SecureVector<byte> z = op->agree(in, in_len);
if(!kdf)
return z;
return kdf->derive_key(key_len, z, params, params_len);
}
}
|