1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/*
* ElGamal
* (C) 1999-2007 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/elgamal.h>
#include <botan/numthry.h>
#include <botan/keypair.h>
#include <botan/internal/workfactor.h>
namespace Botan {
/*
* ElGamal_PublicKey Constructor
*/
ElGamal_PublicKey::ElGamal_PublicKey(const DL_Group& grp, const BigInt& y1)
{
group = grp;
y = y1;
}
/*
* ElGamal_PrivateKey Constructor
*/
ElGamal_PrivateKey::ElGamal_PrivateKey(RandomNumberGenerator& rng,
const DL_Group& grp,
const BigInt& x_arg)
{
group = grp;
x = x_arg;
if(x == 0)
x.randomize(rng, 2 * dl_work_factor(group_p().bits()));
y = power_mod(group_g(), x, group_p());
if(x_arg == 0)
gen_check(rng);
else
load_check(rng);
}
ElGamal_PrivateKey::ElGamal_PrivateKey(const AlgorithmIdentifier& alg_id,
const MemoryRegion<byte>& key_bits,
RandomNumberGenerator& rng) :
DL_Scheme_PrivateKey(alg_id, key_bits, DL_Group::ANSI_X9_42)
{
y = power_mod(group_g(), x, group_p());
load_check(rng);
}
/*
* Check Private ElGamal Parameters
*/
bool ElGamal_PrivateKey::check_key(RandomNumberGenerator& rng,
bool strong) const
{
if(!DL_Scheme_PrivateKey::check_key(rng, strong))
return false;
if(!strong)
return true;
try
{
PK_Encryptor_EME this_encryptor(*this, "EME1(SHA-1)");
PK_Decryptor_EME this_decryptor(*this, "EME1(SHA-1)");
KeyPair::check_key(rng,
this_encryptor,
this_decryptor);
}
catch(Self_Test_Failure)
{
return false;
}
return true;
}
ElGamal_Encryption_Operation::ElGamal_Encryption_Operation(const ElGamal_PublicKey& key)
{
const BigInt& p = key.group_p();
powermod_g_p = Fixed_Base_Power_Mod(key.group_g(), p);
powermod_y_p = Fixed_Base_Power_Mod(key.get_y(), p);
mod_p = Modular_Reducer(p);
}
SecureVector<byte>
ElGamal_Encryption_Operation::encrypt(const byte msg[], u32bit msg_len,
RandomNumberGenerator& rng) const
{
const BigInt& p = mod_p.get_modulus();
BigInt m(msg, msg_len);
if(m >= p)
throw Invalid_Argument("ElGamal encryption: Input is too large");
BigInt k(rng, 2 * dl_work_factor(p.bits()));
BigInt a = powermod_g_p(k);
BigInt b = mod_p.multiply(m, powermod_y_p(k));
SecureVector<byte> output(2*p.bytes());
a.binary_encode(output + (p.bytes() - a.bytes()));
b.binary_encode(output + output.size() / 2 + (p.bytes() - b.bytes()));
return output;
}
ElGamal_Decryption_Operation::ElGamal_Decryption_Operation(const ElGamal_PrivateKey& key)
{
const BigInt& p = key.group_p();
powermod_x_p = Fixed_Exponent_Power_Mod(key.get_x(), p);
mod_p = Modular_Reducer(p);
BigInt k = Blinder::choose_nonce(key.get_x(), p);
blinder = Blinder(k, power_mod(k, key.get_x(), p), p);
}
SecureVector<byte>
ElGamal_Decryption_Operation::decrypt(const byte msg[], u32bit msg_len) const
{
const BigInt& p = mod_p.get_modulus();
const u32bit p_bytes = p.bytes();
if(msg_len != 2 * p_bytes)
throw Invalid_Argument("ElGamal decryption: Invalid message");
BigInt a(msg, p_bytes);
BigInt b(msg + p_bytes, p_bytes);
if(a >= p || b >= p)
throw Invalid_Argument("ElGamal decryption: Invalid message");
a = blinder.blind(a);
BigInt r = mod_p.multiply(b, inverse_mod(powermod_x_p(a), p));
return BigInt::encode(blinder.unblind(r));
}
}
|