1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*************************************************
* Number Theory Source File *
* (C) 1999-2007 Jack Lloyd *
*************************************************/
#include <botan/numthry.h>
#include <algorithm>
namespace Botan {
namespace {
/*************************************************
* Miller-Rabin Iterations *
*************************************************/
u32bit miller_rabin_test_iterations(u32bit bits, bool verify)
{
struct mapping { u32bit bits; u32bit verify_iter; u32bit check_iter; };
static const mapping tests[] = {
{ 50, 55, 25 },
{ 100, 38, 22 },
{ 160, 32, 18 },
{ 163, 31, 17 },
{ 168, 30, 16 },
{ 177, 29, 16 },
{ 181, 28, 15 },
{ 185, 27, 15 },
{ 190, 26, 15 },
{ 195, 25, 14 },
{ 201, 24, 14 },
{ 208, 23, 14 },
{ 215, 22, 13 },
{ 222, 21, 13 },
{ 231, 20, 13 },
{ 241, 19, 12 },
{ 252, 18, 12 },
{ 264, 17, 12 },
{ 278, 16, 11 },
{ 294, 15, 10 },
{ 313, 14, 9 },
{ 334, 13, 8 },
{ 360, 12, 8 },
{ 392, 11, 7 },
{ 430, 10, 7 },
{ 479, 9, 6 },
{ 542, 8, 6 },
{ 626, 7, 5 },
{ 746, 6, 4 },
{ 926, 5, 3 },
{ 1232, 4, 2 },
{ 1853, 3, 2 },
{ 0, 0, 0 }
};
for(u32bit j = 0; tests[j].bits; ++j)
{
if(bits <= tests[j].bits)
if(verify)
return tests[j].verify_iter;
else
return tests[j].check_iter;
}
return 2;
}
}
/*************************************************
* Return the number of 0 bits at the end of n *
*************************************************/
u32bit low_zero_bits(const BigInt& n)
{
if(n.is_zero()) return 0;
u32bit bits = 0, max_bits = n.bits();
while((n.get_bit(bits) == 0) && bits < max_bits)
++bits;
return bits;
}
/*************************************************
* Calculate the GCD *
*************************************************/
BigInt gcd(const BigInt& a, const BigInt& b)
{
if(a.is_zero() || b.is_zero()) return 0;
if(a == 1 || b == 1) return 1;
BigInt x = a, y = b;
x.set_sign(BigInt::Positive);
y.set_sign(BigInt::Positive);
u32bit shift = std::min(low_zero_bits(x), low_zero_bits(y));
x >>= shift;
y >>= shift;
while(x.is_nonzero())
{
x >>= low_zero_bits(x);
y >>= low_zero_bits(y);
if(x >= y) { x -= y; x >>= 1; }
else { y -= x; y >>= 1; }
}
return (y << shift);
}
/*************************************************
* Calculate the LCM *
*************************************************/
BigInt lcm(const BigInt& a, const BigInt& b)
{
return ((a * b) / gcd(a, b));
}
/*************************************************
* Find the Modular Inverse *
*************************************************/
BigInt inverse_mod(const BigInt& n, const BigInt& mod)
{
if(mod.is_zero())
throw BigInt::DivideByZero();
if(mod.is_negative() || n.is_negative())
throw Invalid_Argument("inverse_mod: arguments must be non-negative");
if(n.is_zero() || (n.is_even() && mod.is_even()))
return 0;
BigInt x = mod, y = n, u = mod, v = n;
BigInt A = 1, B = 0, C = 0, D = 1;
while(u.is_nonzero())
{
u32bit zero_bits = low_zero_bits(u);
u >>= zero_bits;
for(u32bit j = 0; j != zero_bits; ++j)
{
if(A.is_odd() || B.is_odd())
{ A += y; B -= x; }
A >>= 1; B >>= 1;
}
zero_bits = low_zero_bits(v);
v >>= zero_bits;
for(u32bit j = 0; j != zero_bits; ++j)
{
if(C.is_odd() || D.is_odd())
{ C += y; D -= x; }
C >>= 1; D >>= 1;
}
if(u >= v) { u -= v; A -= C; B -= D; }
else { v -= u; C -= A; D -= B; }
}
if(v != 1)
return 0;
while(D.is_negative()) D += mod;
while(D >= mod) D -= mod;
return D;
}
/*************************************************
* Modular Exponentiation *
*************************************************/
BigInt power_mod(const BigInt& base, const BigInt& exp, const BigInt& mod)
{
Power_Mod pow_mod(mod);
pow_mod.set_base(base);
pow_mod.set_exponent(exp);
return pow_mod.execute();
}
/*************************************************
* Do simple tests of primality *
*************************************************/
s32bit simple_primality_tests(const BigInt& n)
{
const s32bit NOT_PRIME = -1, UNKNOWN = 0, PRIME = 1;
if(n == 2)
return PRIME;
if(n <= 1 || n.is_even())
return NOT_PRIME;
if(n <= PRIMES[PRIME_TABLE_SIZE-1])
{
const word num = n.word_at(0);
for(u32bit j = 0; PRIMES[j]; ++j)
{
if(num == PRIMES[j]) return PRIME;
if(num < PRIMES[j]) return NOT_PRIME;
}
return NOT_PRIME;
}
u32bit check_first = std::min(n.bits() / 32, PRIME_PRODUCTS_TABLE_SIZE);
for(u32bit j = 0; j != check_first; ++j)
if(gcd(n, PRIME_PRODUCTS[j]) != 1)
return NOT_PRIME;
return UNKNOWN;
}
/*************************************************
* Fast check of primality *
*************************************************/
bool check_prime(const BigInt& n, RandomNumberGenerator& rng)
{
return run_primality_tests(rng, n, 0);
}
/*************************************************
* Test for primality *
*************************************************/
bool is_prime(const BigInt& n, RandomNumberGenerator& rng)
{
return run_primality_tests(rng, n, 1);
}
/*************************************************
* Verify primality *
*************************************************/
bool verify_prime(const BigInt& n, RandomNumberGenerator& rng)
{
return run_primality_tests(rng, n, 2);
}
/*************************************************
* Verify primality *
*************************************************/
bool run_primality_tests(RandomNumberGenerator& rng,
const BigInt& n, u32bit level)
{
s32bit simple_tests = simple_primality_tests(n);
if(simple_tests) return (simple_tests == 1) ? true : false;
return passes_mr_tests(rng, n, level);
}
/*************************************************
* Test for primaility using Miller-Rabin *
*************************************************/
bool passes_mr_tests(RandomNumberGenerator& rng,
const BigInt& n, u32bit level)
{
const u32bit PREF_NONCE_BITS = 40;
if(level > 2)
level = 2;
MillerRabin_Test mr(n);
if(!mr.passes_test(2))
return false;
if(level == 0)
return true;
const u32bit NONCE_BITS = std::min(n.bits() - 1, PREF_NONCE_BITS);
const bool verify = (level == 2);
u32bit tests = miller_rabin_test_iterations(n.bits(), verify);
BigInt nonce;
for(u32bit j = 0; j != tests; ++j)
{
if(verify) nonce = random_integer(rng, NONCE_BITS);
else nonce = PRIMES[j];
if(!mr.passes_test(nonce))
return false;
}
return true;
}
/*************************************************
* Miller-Rabin Test *
*************************************************/
bool MillerRabin_Test::passes_test(const BigInt& a)
{
if(a < 2 || a >= n_minus_1)
throw Invalid_Argument("Bad size for nonce in Miller-Rabin test");
BigInt y = pow_mod(a);
if(y == 1 || y == n_minus_1)
return true;
for(u32bit j = 1; j != s; ++j)
{
y = reducer.square(y);
if(y == 1)
return false;
if(y == n_minus_1)
return true;
}
return false;
}
/*************************************************
* Miller-Rabin Constructor *
*************************************************/
MillerRabin_Test::MillerRabin_Test(const BigInt& num)
{
if(num.is_even() || num < 3)
throw Invalid_Argument("MillerRabin_Test: Invalid number for testing");
n = num;
n_minus_1 = n - 1;
s = low_zero_bits(n_minus_1);
r = n_minus_1 >> s;
pow_mod = Fixed_Exponent_Power_Mod(r, n);
reducer = Modular_Reducer(n);
}
}
|