aboutsummaryrefslogtreecommitdiffstats
path: root/src/mp_mul.cpp
blob: d300d4a56c20acd3bdf16cc8ac6431bd68daf03e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*************************************************
* Karatsuba Multiplication Source File           *
* (C) 1999-2008 The Botan Project                *
*************************************************/

#include <botan/mp_core.h>
#include <botan/mem_ops.h>

namespace Botan {

namespace {

/*************************************************
* Simple O(N^2) Multiplication                   *
*************************************************/
void bigint_simple_mul(word z[], const word x[], u32bit x_size,
                                 const word y[], u32bit y_size)
   {
   clear_mem(z, x_size + y_size);

   for(u32bit j = 0; j != x_size; ++j)
      z[j+y_size] = bigint_mul_add_words(z + j, y, y_size, x[j]);
   }

/*************************************************
* Karatsuba Multiplication Operation             *
*************************************************/
void karatsuba_mul(word z[], const word x[], const word y[], u32bit N,
                   word workspace[])
   {
   const u32bit KARATSUBA_MUL_LOWER_SIZE = BOTAN_KARAT_MUL_THRESHOLD;

   if(N == 6)
      bigint_comba_mul6(z, x, y);
   else if(N == 8)
      bigint_comba_mul8(z, x, y);
   else if(N < KARATSUBA_MUL_LOWER_SIZE || N % 2)
      bigint_simple_mul(z, x, N, y, N);
   else
      {
      const u32bit N2 = N / 2;

      const word* x0 = x;
      const word* x1 = x + N2;
      const word* y0 = y;
      const word* y1 = y + N2;
      word* z0 = z;
      word* z1 = z + N;

      const s32bit cmp0 = bigint_cmp(x0, N2, x1, N2);
      const s32bit cmp1 = bigint_cmp(y1, N2, y0, N2);

      clear_mem(workspace, 2*N);

      if(cmp0 && cmp1)
         {
         if(cmp0 > 0)
            bigint_sub3(z0, x0, N2, x1, N2);
         else
            bigint_sub3(z0, x1, N2, x0, N2);

         if(cmp1 > 0)
            bigint_sub3(z1, y1, N2, y0, N2);
         else
            bigint_sub3(z1, y0, N2, y1, N2);

         karatsuba_mul(workspace, z0, z1, N2, workspace+N);
         }

      karatsuba_mul(z0, x0, y0, N2, workspace+N);
      karatsuba_mul(z1, x1, y1, N2, workspace+N);

      word carry = bigint_add3_nc(workspace+N, z0, N, z1, N);
      carry += bigint_add2_nc(z + N2, N, workspace + N, N);
      bigint_add2_nc(z + N + N2, N2, &carry, 1);

      if((cmp0 == cmp1) || (cmp0 == 0) || (cmp1 == 0))
         bigint_add2(z + N2, 2*N-N2, workspace, N);
      else
         bigint_sub2(z + N2, 2*N-N2, workspace, N);
      }
   }

/*************************************************
* Pick a good size for the Karatsuba multiply    *
*************************************************/
u32bit karatsuba_size(u32bit z_size,
                      u32bit x_size, u32bit x_sw,
                      u32bit y_size, u32bit y_sw)
   {
   if(x_sw > x_size || x_sw > y_size || y_sw > x_size || y_sw > y_size)
      return 0;

   if(((x_size == x_sw) && (x_size % 2)) ||
      ((y_size == y_sw) && (y_size % 2)))
      return 0;

   const u32bit start = (x_sw > y_sw) ? x_sw : y_sw;
   const u32bit end = (x_size < y_size) ? x_size : y_size;

   if(start == end)
      {
      if(start % 2)
         return 0;
      return start;
      }

   for(u32bit j = start; j <= end; ++j)
      {
      if(j % 2)
         continue;

      if(2*j > z_size)
         return 0;

      if(x_sw <= j && j <= x_size && y_sw <= j && j <= y_size)
         {
         if(j % 4 == 2 &&
            (j+2) <= x_size && (j+2) <= y_size && 2*(j+2) <= z_size)
            return j+2;
         return j;
         }
      }

   return 0;
   }

/*************************************************
* Handle small operand multiplies                *
*************************************************/
void handle_small_mul(word z[], u32bit z_size,
                      const word x[], u32bit x_size, u32bit x_sw,
                      const word y[], u32bit y_size, u32bit y_sw)
   {
   if(x_sw == 1)        bigint_linmul3(z, y, y_sw, x[0]);
   else if(y_sw == 1)   bigint_linmul3(z, x, x_sw, y[0]);

   else if(x_sw <= 4 && x_size >= 4 &&
           y_sw <= 4 && y_size >= 4 && z_size >= 8)
      bigint_comba_mul4(z, x, y);

   else if(x_sw <= 6 && x_size >= 6 &&
           y_sw <= 6 && y_size >= 6 && z_size >= 12)
      bigint_comba_mul6(z, x, y);

   else if(x_sw <= 8 && x_size >= 8 &&
           y_sw <= 8 && y_size >= 8 && z_size >= 16)
      bigint_comba_mul8(z, x, y);

   else
      bigint_simple_mul(z, x, x_sw, y, y_sw);
   }

}

/*************************************************
* Multiplication Algorithm Dispatcher            *
*************************************************/
void bigint_mul(word z[], u32bit z_size, word workspace[],
                const word x[], u32bit x_size, u32bit x_sw,
                const word y[], u32bit y_size, u32bit y_sw)
   {
   if(x_size <= 8 || y_size <= 8)
      {
      handle_small_mul(z, z_size, x, x_size, x_sw, y, y_size, y_sw);
      return;
      }

   const u32bit N = karatsuba_size(z_size, x_size, x_sw, y_size, y_sw);

   if(N)
      {
      clear_mem(workspace, 2*N);
      karatsuba_mul(z, x, y, N, workspace);
      }
   else
      bigint_simple_mul(z, x, x_sw, y, y_sw);
   }

}