aboutsummaryrefslogtreecommitdiffstats
path: root/src/modes/xts/xts.cpp
blob: 80b7ed7f3a1d713c077863a47897bd689ad73bbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
* XTS Mode
* (C) 2009,2013 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/

#include <botan/xts.h>
#include <botan/loadstor.h>
#include <botan/internal/xor_buf.h>
#include <botan/internal/rounding.h>

namespace Botan {

namespace {

void poly_double_128(byte out[], const byte in[])
   {
   u64bit X0 = load_le<u64bit>(in, 0);
   u64bit X1 = load_le<u64bit>(in, 1);

   const bool carry = (X1 >> 63);

   X1 = (X1 << 1) | (X0 >> 63);
   X0 = (X0 << 1);

   if(carry)
      X0 ^= 0x87;

   store_le(out, X0, X1);
   }

void poly_double_64(byte out[], const byte in[])
   {
   u64bit X = load_le<u64bit>(in, 0);
   const bool carry = (X >> 63);
   X <<= 1;
   if(carry)
      X ^= 0x1B;
   store_le(X, out);
   }

inline void poly_double(byte out[], const byte in[], size_t size)
   {
   if(size == 8)
      poly_double_64(out, in);
   else
      poly_double_128(out, in);
   }

}

XTS_Mode::XTS_Mode(BlockCipher* cipher) : m_cipher(cipher)
   {
   if(m_cipher->block_size() != 8 && m_cipher->block_size() != 16)
      throw std::invalid_argument("Bad cipher for XTS: " + cipher->name());

   m_tweak_cipher.reset(m_cipher->clone());
   m_tweak.resize(update_granularity());
   }

void XTS_Mode::clear()
   {
   m_cipher->clear();
   m_tweak_cipher->clear();
   zeroise(m_tweak);
   }

std::string XTS_Mode::name() const
   {
   return cipher().name() + "/XTS";
   }

size_t XTS_Mode::update_granularity() const
   {
   return cipher().parallel_bytes();
   }

size_t XTS_Mode::minimum_final_size() const
   {
   return cipher().block_size() + 1;
   }

Key_Length_Specification XTS_Mode::key_spec() const
   {
   return cipher().key_spec().multiple(2);
   }

size_t XTS_Mode::default_nonce_size() const
   {
   return cipher().block_size();
   }

bool XTS_Mode::valid_nonce_length(size_t n) const
   {
   return cipher().block_size() == n;
   }

void XTS_Mode::key_schedule(const byte key[], size_t length)
   {
   const size_t key_half = length / 2;

   if(length % 2 == 1 || !m_cipher->valid_keylength(key_half))
      throw Invalid_Key_Length(name(), length);

   m_cipher->set_key(&key[0], key_half);
   m_tweak_cipher->set_key(&key[key_half], key_half);
   }

secure_vector<byte> XTS_Mode::start(const byte nonce[], size_t nonce_len)
   {
   if(!valid_nonce_length(nonce_len))
      throw Invalid_IV_Length(name(), nonce_len);

   copy_mem(&m_tweak[0], nonce, nonce_len);
   m_tweak_cipher->encrypt(&m_tweak[0]);

   update_tweak(0);

   return secure_vector<byte>();
   }

void XTS_Mode::update_tweak(size_t which)
   {
   const size_t BS = m_tweak_cipher->block_size();

   if(which > 0)
      poly_double(&m_tweak[0], &m_tweak[(which-1)*BS], BS);

   const size_t blocks_in_tweak = update_granularity() / BS;

   for(size_t i = 1; i < blocks_in_tweak; ++i)
      poly_double(&m_tweak[i*BS], &m_tweak[(i-1)*BS], BS);
   }

size_t XTS_Encryption::output_length(size_t input_length) const
   {
   return round_up(input_length, cipher().block_size());
   }

void XTS_Encryption::update(secure_vector<byte>& buffer, size_t offset)
   {
   BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
   const size_t sz = buffer.size() - offset;
   byte* buf = &buffer[offset];

   const size_t BS = cipher().block_size();

   BOTAN_ASSERT(sz % BS == 0, "Input is full blocks");
   size_t blocks = sz / BS;

   const size_t blocks_in_tweak = update_granularity() / BS;

   while(blocks)
      {
      const size_t to_proc = std::min(blocks, blocks_in_tweak);
      const size_t to_proc_bytes = to_proc * BS;

      xor_buf(buf, tweak(), to_proc_bytes);
      cipher().encrypt_n(buf, buf, to_proc);
      xor_buf(buf, tweak(), to_proc_bytes);

      buf += to_proc * BS;
      blocks -= to_proc;

      update_tweak(to_proc);
      }
   }

void XTS_Encryption::finish(secure_vector<byte>& buffer, size_t offset)
   {
   BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
   const size_t sz = buffer.size() - offset;
   byte* buf = &buffer[offset];

   BOTAN_ASSERT(sz >= minimum_final_size(), "Have sufficient final input");

   const size_t BS = cipher().block_size();

   if(sz % BS == 0)
      {
      update(buffer, offset);
      }
   else
      {
      // steal ciphertext
      const size_t full_blocks = ((sz / BS) - 1) * BS;
      const size_t final_bytes = sz - full_blocks;
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");

      secure_vector<byte> last(buf + full_blocks, buf + full_blocks + final_bytes);
      buffer.resize(full_blocks + offset);
      update(buffer, offset);

      xor_buf(last, tweak(), BS);
      cipher().encrypt(last);
      xor_buf(last, tweak(), BS);

      for(size_t i = 0; i != final_bytes - BS; ++i)
         std::swap(last[i], last[i + BS]);

      xor_buf(last, tweak() + BS, BS);
      cipher().encrypt(last);
      xor_buf(last, tweak() + BS, BS);

      buffer += last;
      }
   }

size_t XTS_Decryption::output_length(size_t input_length) const
   {
   // might be less
   return input_length;
   }

void XTS_Decryption::update(secure_vector<byte>& buffer, size_t offset)
   {
   BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
   const size_t sz = buffer.size() - offset;
   byte* buf = &buffer[offset];

   const size_t BS = cipher().block_size();

   BOTAN_ASSERT(sz % BS == 0, "Input is full blocks");
   size_t blocks = sz / BS;

   const size_t blocks_in_tweak = update_granularity() / BS;

   while(blocks)
      {
      const size_t to_proc = std::min(blocks, blocks_in_tweak);
      const size_t to_proc_bytes = to_proc * BS;

      xor_buf(buf, tweak(), to_proc_bytes);
      cipher().decrypt_n(buf, buf, to_proc);
      xor_buf(buf, tweak(), to_proc_bytes);

      buf += to_proc * BS;
      blocks -= to_proc;

      update_tweak(to_proc);
      }
   }

void XTS_Decryption::finish(secure_vector<byte>& buffer, size_t offset)
   {
   BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
   const size_t sz = buffer.size() - offset;
   byte* buf = &buffer[offset];

   BOTAN_ASSERT(sz >= minimum_final_size(), "Have sufficient final input");

   const size_t BS = cipher().block_size();

   if(sz % BS == 0)
      {
      update(buffer, offset);
      }
   else
      {
      // steal ciphertext
      const size_t full_blocks = ((sz / BS) - 1) * BS;
      const size_t final_bytes = sz - full_blocks;
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");

      secure_vector<byte> last(buf + full_blocks, buf + full_blocks + final_bytes);
      buffer.resize(full_blocks + offset);
      update(buffer, offset);

      xor_buf(last, tweak() + BS, BS);
      cipher().decrypt(last);
      xor_buf(last, tweak() + BS, BS);

      for(size_t i = 0; i != final_bytes - BS; ++i)
         std::swap(last[i], last[i + BS]);

      xor_buf(last, tweak(), BS);
      cipher().decrypt(last);
      xor_buf(last, tweak(), BS);

      buffer += last;
      }
   }

}