1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* Montgomery Exponentiation
* (C) 1999-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/internal/def_powm.h>
#include <botan/numthry.h>
#include <botan/internal/mp_core.h>
namespace Botan {
/*
* Set the exponent
*/
void Montgomery_Exponentiator::set_exponent(const BigInt& exp)
{
this->exp = exp;
exp_bits = exp.bits();
}
/*
* Set the base
*/
void Montgomery_Exponentiator::set_base(const BigInt& base)
{
window_bits = Power_Mod::window_bits(exp.bits(), base.bits(), hints);
g.resize((1 << window_bits) - 1);
SecureVector<word> z(2 * (mod_words + 1));
SecureVector<word> workspace(z.size());
g[0] = (base >= modulus) ? (base % modulus) : base;
bigint_monty_mul(&z[0], z.size(),
g[0].data(), g[0].size(), g[0].sig_words(),
R2.data(), R2.size(), R2.sig_words(),
modulus.data(), mod_words, mod_prime,
&workspace[0]);
g[0].assign(&z[0], mod_words + 1);
const BigInt& x = g[0];
const size_t x_sig = x.sig_words();
for(size_t i = 1; i != g.size(); ++i)
{
const BigInt& y = g[i-1];
const size_t y_sig = y.sig_words();
zeroise(z);
bigint_monty_mul(&z[0], z.size(),
x.data(), x.size(), x_sig,
y.data(), y.size(), y_sig,
modulus.data(), mod_words, mod_prime,
&workspace[0]);
g[i].assign(&z[0], mod_words + 1);
}
}
/*
* Compute the result
*/
BigInt Montgomery_Exponentiator::execute() const
{
const size_t exp_nibbles = (exp_bits + window_bits - 1) / window_bits;
BigInt x = R_mod;
SecureVector<word> z(2 * (mod_words + 1));
SecureVector<word> workspace(2 * (mod_words + 1));
for(size_t i = exp_nibbles; i > 0; --i)
{
for(size_t k = 0; k != window_bits; ++k)
{
zeroise(z);
bigint_monty_sqr(&z[0], z.size(),
x.data(), x.size(), x.sig_words(),
modulus.data(), mod_words, mod_prime,
&workspace[0]);
x.assign(&z[0], mod_words + 1);
}
if(u32bit nibble = exp.get_substring(window_bits*(i-1), window_bits))
{
const BigInt& y = g[nibble-1];
zeroise(z);
bigint_monty_mul(&z[0], z.size(),
x.data(), x.size(), x.sig_words(),
y.data(), y.size(), y.sig_words(),
modulus.data(), mod_words, mod_prime,
&workspace[0]);
x.assign(&z[0], mod_words + 1);
}
}
x.get_reg().resize(2*mod_words+1);
bigint_monty_redc(&x[0], x.size(),
&workspace[0],
modulus.data(), mod_words, mod_prime);
x.get_reg().resize(mod_words+1);
return x;
}
/*
* Montgomery_Exponentiator Constructor
*/
Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod,
Power_Mod::Usage_Hints hints)
{
// Montgomery reduction only works for positive odd moduli
if(!mod.is_positive() || mod.is_even())
throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus");
window_bits = 0;
this->hints = hints;
modulus = mod;
mod_words = modulus.sig_words();
BigInt mod_prime_bn(BigInt::Power2, MP_WORD_BITS);
mod_prime = (mod_prime_bn - inverse_mod(modulus, mod_prime_bn)).word_at(0);
R_mod = BigInt(BigInt::Power2, MP_WORD_BITS * mod_words);
R_mod %= modulus;
R2 = BigInt(BigInt::Power2, 2 * MP_WORD_BITS * mod_words);
R2 %= modulus;
}
}
|