aboutsummaryrefslogtreecommitdiffstats
path: root/src/math/numbertheory/powm_mnt.cpp
blob: a8155bbfbdcd3bdaa7dab37ee234ea74adc44379 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
* Montgomery Exponentiation
* (C) 1999-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/

#include <botan/internal/def_powm.h>
#include <botan/numthry.h>
#include <botan/internal/mp_core.h>

namespace Botan {

namespace {

/*
* Compute -input^-1 mod 2^MP_WORD_BITS. We are assured that the
* inverse exists because input is odd (checked by checking that the
* modulus is odd in the Montgomery_Exponentiator constructor, and
* input is the low word of the modulus and thus also odd), and thus
* input and 2^n are relatively prime.
*/
word monty_inverse(word input)
   {
   word b = input;
   word x2 = 1, x1 = 0, y2 = 0, y1 = 1;

   // First iteration, a = n+1
   word q = bigint_divop(1, 0, b);
   word r = (MP_WORD_MAX - q*b) + 1;
   word x = x2 - q*x1;
   word y = y2 - q*y1;

   word a = b;
   b = r;
   x2 = x1;
   x1 = x;
   y2 = y1;
   y1 = y;

   while(b > 0)
      {
      q = a / b;
      r = a - q*b;
      x = x2 - q*x1;
      y = y2 - q*y1;

      a = b;
      b = r;
      x2 = x1;
      x1 = x;
      y2 = y1;
      y1 = y;
      }

   // Now invert in addition space
   y2 = (MP_WORD_MAX - y2) + 1;

   return y2;
   }

}

/*
* Set the exponent
*/
void Montgomery_Exponentiator::set_exponent(const BigInt& exp)
   {
   m_exp = exp;
   m_exp_bits = exp.bits();
   }

/*
* Set the base
*/
void Montgomery_Exponentiator::set_base(const BigInt& base)
   {
   m_window_bits = Power_Mod::window_bits(m_exp.bits(), base.bits(), m_hints);

   m_g.resize((1 << m_window_bits) - 1);

   secure_vector<word> z(2 * (m_mod_words + 1));
   secure_vector<word> workspace(z.size());

   m_g[0] = (base >= m_modulus) ? (base % m_modulus) : base;

   bigint_monty_mul(&z[0], z.size(),
                    m_g[0].data(), m_g[0].size(), m_g[0].sig_words(),
                    m_R2_mod.data(), m_R2_mod.size(), m_R2_mod.sig_words(),
                    m_modulus.data(), m_mod_words, m_mod_prime,
                    &workspace[0]);

   m_g[0].assign(&z[0], m_mod_words + 1);

   const BigInt& x = m_g[0];
   const size_t x_sig = x.sig_words();

   for(size_t i = 1; i != m_g.size(); ++i)
      {
      const BigInt& y = m_g[i-1];
      const size_t y_sig = y.sig_words();

      zeroise(z);
      bigint_monty_mul(&z[0], z.size(),
                       x.data(), x.size(), x_sig,
                       y.data(), y.size(), y_sig,
                       m_modulus.data(), m_mod_words, m_mod_prime,
                       &workspace[0]);

      m_g[i].assign(&z[0], m_mod_words + 1);
      }
   }

/*
* Compute the result
*/
BigInt Montgomery_Exponentiator::execute() const
   {
   const size_t exp_nibbles = (m_exp_bits + m_window_bits - 1) / m_window_bits;

   BigInt x = m_R_mod;
   secure_vector<word> z(2 * (m_mod_words + 1));
   secure_vector<word> workspace(2 * (m_mod_words + 1));

   for(size_t i = exp_nibbles; i > 0; --i)
      {
      for(size_t k = 0; k != m_window_bits; ++k)
         {
         zeroise(z);

         bigint_monty_sqr(&z[0], z.size(),
                          x.data(), x.size(), x.sig_words(),
                          m_modulus.data(), m_mod_words, m_mod_prime,
                          &workspace[0]);

         x.assign(&z[0], m_mod_words + 1);
         }

      if(u32bit nibble = m_exp.get_substring(m_window_bits*(i-1), m_window_bits))
         {
         const BigInt& y = m_g[nibble-1];

         zeroise(z);
         bigint_monty_mul(&z[0], z.size(),
                          x.data(), x.size(), x.sig_words(),
                          y.data(), y.size(), y.sig_words(),
                          m_modulus.data(), m_mod_words, m_mod_prime,
                          &workspace[0]);

         x.assign(&z[0], m_mod_words + 1);
         }
      }

   x.grow_to(2*m_mod_words + 1);

   bigint_monty_redc(x.mutable_data(), x.size(),
                     m_modulus.data(), m_mod_words, m_mod_prime,
                     &workspace[0]);

   x.mask_bits(MP_WORD_BITS * (m_mod_words + 1));

   return x;
   }

/*
* Montgomery_Exponentiator Constructor
*/
Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod,
                                                   Power_Mod::Usage_Hints hints) :
   m_modulus(mod),
   m_mod_words(m_modulus.sig_words()),
   m_window_bits(1),
   m_hints(hints)
   {
   // Montgomery reduction only works for positive odd moduli
   if(!m_modulus.is_positive() || m_modulus.is_even())
      throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus");

   m_mod_prime = monty_inverse(mod.word_at(0));

   const BigInt r = BigInt::power_of_2(m_mod_words * BOTAN_MP_WORD_BITS);
   m_R_mod = r % m_modulus;
   m_R2_mod = (m_R_mod * m_R_mod) % m_modulus;
   }

}