1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
/*
* Arithmetic for point groups of elliptic curves over GF(p)
*
* (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke
* 2008-2010 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/point_gfp.h>
#include <botan/numthry.h>
namespace Botan {
namespace {
BigInt decompress_point(bool yMod2,
const BigInt& x,
const CurveGFp& curve)
{
BigInt xpow3 = x * x * x;
BigInt g = curve.get_a() * x;
g += xpow3;
g += curve.get_b();
g = g % curve.get_p();
BigInt z = ressol(g, curve.get_p());
if(z < 0)
throw Illegal_Point("error during decompression");
if(z.get_bit(0) != yMod2)
z = curve.get_p() - z;
return z;
}
}
// arithmetic operators
PointGFp& PointGFp::operator+=(const PointGFp& rhs)
{
if(rhs.is_zero())
return *this;
if(is_zero())
{
*this = rhs;
return *this;
}
const Modular_Reducer& mod_p = curve.mod_p();
BigInt rhs_z2 = mod_p.square(rhs.coord_z);
BigInt U1 = mod_p.multiply(coord_x, rhs_z2);
BigInt S1 = mod_p.multiply(coord_y, mod_p.multiply(rhs.coord_z, rhs_z2));
BigInt lhs_z2 = mod_p.square(coord_z);
BigInt U2 = mod_p.multiply(rhs.coord_x, lhs_z2);
BigInt S2 = mod_p.multiply(rhs.coord_y, mod_p.multiply(coord_z, lhs_z2));
BigInt H = mod_p.reduce(U2 - U1);
BigInt r = mod_p.reduce(S2 - S1);
if(H.is_zero())
{
if(r.is_zero())
{
mult2();
return *this;
}
*this = PointGFp(curve); // setting myself to zero
return *this;
}
U2 = mod_p.square(H);
S2 = mod_p.multiply(U2, H);
U2 = mod_p.multiply(U1, U2);
BigInt x = mod_p.reduce(mod_p.square(r) - S2 - mod_p.multiply(2, U2));
BigInt y = mod_p.reduce(mod_p.multiply(r, (U2-x)) - mod_p.multiply(S1, S2));
BigInt z = mod_p.multiply(mod_p.multiply(coord_z, rhs.coord_z), H);
coord_x = x;
coord_y = y;
coord_z = z;
return *this;
}
PointGFp& PointGFp::operator-=(const PointGFp& rhs)
{
PointGFp minus_rhs = PointGFp(rhs).negate();
if(is_zero())
*this = minus_rhs;
else
*this += minus_rhs;
return *this;
}
PointGFp& PointGFp::operator*=(const BigInt& scalar)
{
if(scalar.abs() <= 2) // special cases for small values
{
u32bit value = scalar.abs().to_u32bit();
if(value == 0)
*this = PointGFp(curve); // set to zero point
else if(value == 1)
{
if(scalar.is_negative())
this->negate();
}
else if(value == 2)
{
this->mult2();
if(scalar.is_negative())
this->negate();
}
return *this;
}
PointGFp H(this->curve); // create as zero
PointGFp P(*this);
if(scalar.is_negative())
P.negate();
for(int i = scalar.bits() - 1; i >= 0; --i)
{
H.mult2();
if(scalar.get_bit(i))
H += P;
}
if(!H.is_zero()) // cannot convert if H == O
{
/**
* Convert H to an equivalent point with z == 1, thus x and y
* correspond to their affine coordinates
*/
if(H.coord_z != 1)
{
const Modular_Reducer& mod_p = curve.mod_p();
BigInt z_inv = inverse_mod(H.coord_z, curve.get_p());
BigInt z_inv_2 = mod_p.square(z_inv);
H.coord_x = mod_p.multiply(H.coord_x, z_inv_2);
H.coord_y = mod_p.multiply(H.coord_y, mod_p.multiply(z_inv, z_inv_2));
H.coord_z = 1;
}
}
*this = H;
return *this;
}
PointGFp& PointGFp::negate()
{
if(!is_zero())
coord_y = curve.get_p() - coord_y;
return *this;
}
// *this *= 2
void PointGFp::mult2()
{
if(is_zero())
return;
else if(coord_y.is_zero())
{
*this = PointGFp(curve); // setting myself to zero
return;
}
const Modular_Reducer& mod_p = curve.mod_p();
BigInt y_2 = mod_p.square(coord_y);
BigInt S = mod_p.multiply(4, mod_p.multiply(coord_x, y_2));
BigInt a_z4 = mod_p.multiply(curve.get_a(),
mod_p.square(mod_p.square(coord_z)));
BigInt M = mod_p.reduce(a_z4 + 3 * mod_p.square(coord_x));
BigInt x = mod_p.reduce(mod_p.square(M) - mod_p.multiply(2, S));
BigInt U = mod_p.multiply(8, mod_p.square(y_2));
BigInt y = mod_p.reduce(mod_p.multiply(M, S - x) - U);
BigInt z = mod_p.multiply(2, mod_p.multiply(coord_y, coord_z));
coord_x = x;
coord_y = y;
coord_z = z;
}
BigInt PointGFp::get_affine_x() const
{
if(is_zero())
throw Illegal_Transformation("cannot convert to affine");
const Modular_Reducer& mod_p = curve.mod_p();
BigInt z2 = mod_p.square(coord_z);
return mod_p.multiply(coord_x, inverse_mod(z2, curve.get_p()));
}
BigInt PointGFp::get_affine_y() const
{
if(is_zero())
throw Illegal_Transformation("cannot convert to affine");
const Modular_Reducer& mod_p = curve.mod_p();
BigInt z3 = mod_p.cube(coord_z);
return mod_p.multiply(coord_y, inverse_mod(z3, curve.get_p()));
}
// Is this the point at infinity?
bool PointGFp::is_zero() const
{
return(coord_x.is_zero() && coord_z.is_zero());
}
void PointGFp::check_invariants() const
{
/*
Is the point still on the curve?? (If everything is correct, the
point is always on its curve; then the function will return
silently. If Oskar managed to corrupt this object's state, then it
will throw an exception.)
*/
if(is_zero())
return;
const Modular_Reducer& mod_p = curve.mod_p();
BigInt y2 = mod_p.square(coord_y);
BigInt x3 = mod_p.cube(coord_x);
BigInt ax = mod_p.multiply(coord_x, curve.get_a());
if(coord_z == 1)
{
if(mod_p.reduce(x3 + ax + curve.get_b()) != y2)
throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x + b");
}
BigInt z2 = mod_p.square(coord_z);
BigInt z3 = mod_p.multiply(coord_z, z2);
BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, coord_z), ax);
BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3));
if(y2 != mod_p.reduce(x3 + ax_z4 + b_z6))
throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x*z^4 + b*z^6");
}
// swaps the states of *this and other, does not throw!
void PointGFp::swap(PointGFp& other)
{
curve.swap(other.curve);
coord_x.swap(other.coord_x);
coord_y.swap(other.coord_y);
coord_z.swap(other.coord_z);
}
bool PointGFp::operator==(const PointGFp& other) const
{
return (coord_x == other.coord_x &&
coord_y == other.coord_y &&
coord_z == other.coord_z &&
get_curve() == other.get_curve());
}
// arithmetic operators
PointGFp operator+(const PointGFp& lhs, PointGFp const& rhs)
{
PointGFp tmp(lhs);
return tmp += rhs;
}
PointGFp operator-(const PointGFp& lhs, PointGFp const& rhs)
{
PointGFp tmp(lhs);
return tmp -= rhs;
}
PointGFp operator-(const PointGFp& lhs)
{
return PointGFp(lhs).negate();
}
PointGFp operator*(const BigInt& scalar, const PointGFp& point)
{
PointGFp result(point);
return result *= scalar;
}
PointGFp operator*(const PointGFp& point, const BigInt& scalar)
{
PointGFp result(point);
return result *= scalar;
}
// encoding and decoding
SecureVector<byte> EC2OSP(const PointGFp& point, byte format)
{
if(point.is_zero())
return SecureVector<byte>(1); // single 0 byte
const u32bit p_bytes = point.get_curve().get_p().bytes();
BigInt x = point.get_affine_x();
BigInt y = point.get_affine_y();
SecureVector<byte> bX = BigInt::encode_1363(x, p_bytes);
SecureVector<byte> bY = BigInt::encode_1363(y, p_bytes);
if(format == PointGFp::UNCOMPRESSED)
{
SecureVector<byte> result(2*p_bytes+1);
result[0] = 4;
result.copy(1, bX.begin(), p_bytes);
result.copy(p_bytes+1, bY.begin(), p_bytes);
return result;
}
else if(format == PointGFp::COMPRESSED)
{
SecureVector<byte> result(p_bytes+1);
result[0] = 2;
result.copy(1, bX.begin(), bX.size());
if(y.get_bit(0))
result[0] |= 1;
return result;
}
else if(format == PointGFp::HYBRID)
{
SecureVector<byte> result(2*p_bytes+1);
result[0] = 6;
result.copy(1, bX.begin(), bX.size());
result.copy(p_bytes+1, bY.begin(), bY.size());
if(y.get_bit(0))
result[0] |= 1;
return result;
}
else
throw Invalid_Argument("illegal point encoding format specification");
}
PointGFp OS2ECP(const MemoryRegion<byte>& os, const CurveGFp& curve)
{
if(os.size() == 1 && os[0] == 0)
return PointGFp(curve); // return zero
const byte pc = os[0];
BigInt x, y;
if(pc == 2 || pc == 3)
{
//compressed form
x = BigInt::decode(&os[1], os.size() - 1);
bool yMod2 = ((pc & 0x01) == 1);
y = decompress_point(yMod2, x, curve);
}
else if(pc == 4)
{
// uncompressed form
u32bit l = (os.size() - 1) / 2;
x = BigInt::decode(&os[1], l);
y = BigInt::decode(&os[l+1], l);
}
else if(pc == 6 || pc == 7)
{
// hybrid form
u32bit l = (os.size() - 1) / 2;
x = BigInt::decode(&os[1], l);
y = BigInt::decode(&os[l+1], l);
bool yMod2 = ((pc & 0x01) == 1);
if(decompress_point(yMod2, x, curve) != y)
throw Illegal_Point("OS2ECP: Decoding error in hybrid format");
}
else
throw Invalid_Argument("OS2ECP: Unknown format type");
PointGFp result(curve, x, y);
result.check_invariants();
return result;
}
}
|