1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/*************************************************
* Number Theory Functions Header File *
* (C) 1999-2007 Jack Lloyd *
*************************************************/
#ifndef BOTAN_NUMBER_THEORY_H__
#define BOTAN_NUMBER_THEORY_H__
#include <botan/bigint.h>
#include <botan/reducer.h>
#include <botan/pow_mod.h>
#include <botan/rng.h>
namespace Botan {
/*************************************************
* Fused Arithmetic Operations *
*************************************************/
BigInt BOTAN_DLL mul_add(const BigInt&, const BigInt&, const BigInt&);
BigInt BOTAN_DLL sub_mul(const BigInt&, const BigInt&, const BigInt&);
/*************************************************
* Number Theory Functions *
*************************************************/
inline BigInt abs(const BigInt& n) { return n.abs(); }
void BOTAN_DLL divide(const BigInt&, const BigInt&, BigInt&, BigInt&);
BigInt BOTAN_DLL gcd(const BigInt&, const BigInt&);
BigInt BOTAN_DLL lcm(const BigInt&, const BigInt&);
BigInt BOTAN_DLL square(const BigInt&);
BigInt BOTAN_DLL inverse_mod(const BigInt&, const BigInt&);
s32bit BOTAN_DLL jacobi(const BigInt&, const BigInt&);
BigInt BOTAN_DLL power_mod(const BigInt&, const BigInt&, const BigInt&);
/*************************************************
* Compute the square root of x modulo a prime *
* using the Shanks-Tonnelli algorithm *
*************************************************/
BigInt ressol(const BigInt& x, const BigInt& p);
/*************************************************
* Utility Functions *
*************************************************/
u32bit BOTAN_DLL low_zero_bits(const BigInt&);
/*************************************************
* Primality Testing *
*************************************************/
bool BOTAN_DLL check_prime(const BigInt&, RandomNumberGenerator&);
bool BOTAN_DLL is_prime(const BigInt&, RandomNumberGenerator&);
bool BOTAN_DLL verify_prime(const BigInt&, RandomNumberGenerator&);
s32bit BOTAN_DLL simple_primality_tests(const BigInt&);
bool BOTAN_DLL passes_mr_tests(RandomNumberGenerator&,
const BigInt&, u32bit = 1);
bool BOTAN_DLL run_primality_tests(RandomNumberGenerator&,
const BigInt&, u32bit = 1);
/*************************************************
* Random Number Generation *
*************************************************/
BigInt BOTAN_DLL random_prime(RandomNumberGenerator&,
u32bit bits, const BigInt& coprime = 1,
u32bit equiv = 1, u32bit equiv_mod = 2);
BigInt BOTAN_DLL random_safe_prime(RandomNumberGenerator&,
u32bit);
/*************************************************
* DSA Parameter Generation *
*************************************************/
SecureVector<byte> BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
BigInt& p, BigInt& q,
u32bit pbits, u32bit qbits);
bool BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
BigInt& p_out, BigInt& q_out,
u32bit p_bits, u32bit q_bits,
const MemoryRegion<byte>& seed);
/*************************************************
* Prime Numbers *
*************************************************/
const u32bit PRIME_TABLE_SIZE = 6541;
const u32bit PRIME_PRODUCTS_TABLE_SIZE = 256;
extern const u16bit BOTAN_DLL PRIMES[];
extern const u64bit PRIME_PRODUCTS[];
/*************************************************
* Miller-Rabin Primality Tester *
*************************************************/
class BOTAN_DLL MillerRabin_Test
{
public:
bool passes_test(const BigInt&);
MillerRabin_Test(const BigInt&);
private:
BigInt n, r, n_minus_1;
u32bit s;
Fixed_Exponent_Power_Mod pow_mod;
Modular_Reducer reducer;
};
}
#endif
|