1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/*
* BigInt
* (C) 1999-2008 Jack Lloyd
* 2007 FlexSecure
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_BIGINT_H__
#define BOTAN_BIGINT_H__
#include <botan/rng.h>
#include <botan/secmem.h>
#include <botan/mp_types.h>
#include <iosfwd>
namespace Botan {
/**
* Arbitrary precision integer
*/
class BOTAN_DLL BigInt
{
public:
/**
* Base enumerator for encoding and decoding
*/
enum Base { Octal = 8, Decimal = 10, Hexadecimal = 16, Binary = 256 };
/**
* Sign symbol definitions for positive and negative numbers
*/
enum Sign { Negative = 0, Positive = 1 };
/**
* Number types (currently only power-of-2 supported)
*/
enum NumberType { Power2 };
/**
* DivideByZero Exception
*/
struct BOTAN_DLL DivideByZero : public Exception
{ DivideByZero() : Exception("BigInt divide by zero") {} };
/**
* += Operator
* @param y the BigInt to add to this
*/
BigInt& operator+=(const BigInt& y);
/**
* -= Operator
* @param y the BigInt to subtract from this
*/
BigInt& operator-=(const BigInt& y);
/**
* *= Operator
* @param y the BigInt to multiply with this
*/
BigInt& operator*=(const BigInt& y);
/**
* /= Operator
* @param y the BigInt to divide this by
*/
BigInt& operator/=(const BigInt& y);
/**
* %= Operator, modulo operator.
* @param y the modulus to reduce this by
*/
BigInt& operator%=(const BigInt& y);
/**
* %= Operator
* @param y the modulus (word) to reduce this by
*/
word operator%=(word y);
/**
* <<= Operator
* @param y the amount of bits to shift this left
*/
BigInt& operator<<=(u32bit y);
/**
* >>= Operator
* @param y the amount of bits to shift this right
*/
BigInt& operator>>=(u32bit y);
/**
* ++ Operator
*/
BigInt& operator++() { return (*this += 1); }
/**
* -- Operator
*/
BigInt& operator--() { return (*this -= 1); }
/**
* ++ Operator (postfix)
*/
BigInt operator++(int) { BigInt x = (*this); ++(*this); return x; }
/**
* -- Operator (postfix)
*/
BigInt operator--(int) { BigInt x = (*this); --(*this); return x; }
/**
* Unary - Operator
*/
BigInt operator-() const;
/**
* ! Operator
*/
bool operator !() const { return (!is_nonzero()); }
/**
* [] Operator (array access)
*/
word& operator[](u32bit i) { return reg[i]; }
/**
* [] Operator (array access)
*/
word operator[](u32bit i) const { return reg[i]; }
/**
* Zeroize the BigInt
*/
void clear() { get_reg().clear(); }
/**
* Compare *this to another BigInt.
* @param n the BigInt value to compare to this.
* @param check_signs include sign in comparison?
* @result if (this<n) return -1, if (this>n) return 1, if both
* values are identical return 0 [like Perl's <=> operator]
*/
s32bit cmp(const BigInt& n, bool check_signs = true) const;
/**
* Test if the integer has an even value
* @result true if the integer is even, false otherwise
*/
bool is_even() const { return (get_bit(0) == 0); }
/**
* Test if the integer has an odd value
* @result true if the integer is odd, false otherwise
*/
bool is_odd() const { return (get_bit(0) == 1); }
/**
* Test if the integer is not zero.
* @result true if the integer is non-zero, false otherwise
*/
bool is_nonzero() const { return (!is_zero()); }
/**
* Test if the integer is zero.
* @result true if the integer is zero, false otherwise
*/
bool is_zero() const
{
const u32bit sw = sig_words();
for(u32bit i = 0; i != sw; ++i)
if(reg[i])
return false;
return true;
}
/**
* Set bit at specified position
* @param n bit position to set
*/
void set_bit(u32bit n);
/**
* Clear bit at specified position
* @param n bit position to clear
*/
void clear_bit(u32bit n);
/**
* Clear all but the lowest n bits
* @param n amount of bits to keep
*/
void mask_bits(u32bit n);
/**
* Return bit value at specified position
* @param n the bit offset to test
* @result true, if the bit at position n is set, false otherwise
*/
bool get_bit(u32bit n) const;
/**
* Return (a maximum of) 32 bits of the complete value
* @param offset the offset to start extracting
* @param length amount of bits to extract (starting at offset)
* @result the integer extracted from the register starting at
* offset with specified length
*/
u32bit get_substring(u32bit offset, u32bit length) const;
/**
* @param n the offset to get a byte from
* @result byte at offset n
*/
byte byte_at(u32bit n) const;
/**
* Return the word at a specified position of the internal register
* @param n position in the register
* @return the value at position n
*/
word word_at(u32bit n) const
{ return ((n < size()) ? reg[n] : 0); }
/**
* Return the integer as an unsigned 32bit-integer-value. If the
* value is negative OR to big to be stored in 32bits, this
* function will throw an exception.
* @result a 32bit-integer
*/
u32bit to_u32bit() const;
/**
* Tests if the sign of the integer is negative.
* @result true, if the integer has a negative sign,
*/
bool is_negative() const { return (sign() == Negative); }
/**
* Tests if the sign of the integer is positive.
* @result true, if the integer has a positive sign,
*/
bool is_positive() const { return (sign() == Positive); }
/**
* Return the sign of the integer
* @result the sign of the integer
*/
Sign sign() const { return (signedness); }
/**
* Return the opposite sign of the represented integer value
* @result the opposite sign of the represented integer value
*/
Sign reverse_sign() const;
/**
* Flip (mutate) the sign of the integer to its opposite value
*/
void flip_sign();
/**
* Set sign of the integer
* @param sign new Sign to set
*/
void set_sign(Sign sign);
/**
* @result absolute (positive) value of this
*/
BigInt abs() const;
/**
* Give size of internal register
* @result size of internal register in words
*/
u32bit size() const { return get_reg().size(); }
/**
* Give significant words of the represented integer value
* @result significant words of the represented integer value
*/
u32bit sig_words() const
{
const word* x = reg.begin();
u32bit sig = reg.size();
while(sig && (x[sig-1] == 0))
sig--;
return sig;
}
/**
* Give byte-length of the integer
* @result byte-length of the represented integer value
*/
u32bit bytes() const;
/**
* Get the bit-length of the integer.
* @result bit-length of the represented integer value
*/
u32bit bits() const;
/**
* Return a pointer to the big integer word register.
* @result a pointer to the start of the internal register of
* the integer value
*/
const word* data() const { return reg.begin(); }
/**
* return a reference to the internal register containing the value
* @result a reference to the word-array (SecureVector<word>)
* with the internal register value (containing the integer
* value)
*/
SecureVector<word>& get_reg() { return reg; }
/**
* return a const reference to the internal register containing the value
* @result a const reference to the word-array (SecureVector<word>)
* with the internal register value (containing the integer value)
*/
const SecureVector<word>& get_reg() const { return reg; }
/**
* Increase internal register buffer by n words
* @param n increase by n words
*/
void grow_reg(u32bit n);
void grow_to(u32bit n);
/**
* Fill BigInt with a random number with size of bitsize
* @param rng the random number generator to use
* @param bitsize number of bits the created random value should have
*/
void randomize(RandomNumberGenerator& rng, u32bit bitsize = 0);
/**
* Store BigInt-value in a given byte array
* @param buf destination byte array for the integer value
*/
void binary_encode(byte buf[]) const;
/**
* Read integer value from a byte array with given size
* @param buf byte array buffer containing the integer
* @param length size of buf
*/
void binary_decode(const byte buf[], u32bit length);
/**
* Read integer value from a byte array (MemoryRegion<byte>)
* @param buf the BigInt value to compare to this.
*/
void binary_decode(const MemoryRegion<byte>& buf);
u32bit encoded_size(Base = Binary) const;
/**
@param rng a random number generator
@result a random integer between min and max
*/
static BigInt random_integer(RandomNumberGenerator& rng,
const BigInt& min, const BigInt& max);
/**
* Encode the integer value from a BigInt to a SecureVector of bytes
* @param n the BigInt to use as integer source
* @param base number-base of resulting byte array representation
* @result SecureVector of bytes containing the integer with given base
*/
static SecureVector<byte> encode(const BigInt& n, Base base = Binary);
/**
* Encode the integer value from a BigInt to a byte array
* @param buf destination byte array for the encoded integer
* value with given base
* @param n the BigInt to use as integer source
* @param base number-base of resulting byte array representation
*/
static void encode(byte buf[], const BigInt& n, Base base = Binary);
/**
* Create a BigInt from an integer in a byte array
* @param buf the BigInt value to compare to this.
* @param length size of buf
* @param base number-base of the integer in buf
* @result BigInt-representing the given integer read from the byte array
*/
static BigInt decode(const byte buf[], u32bit length,
Base base = Binary);
static BigInt decode(const MemoryRegion<byte>&, Base = Binary);
/**
* Encode a BigInt to a byte array according to IEEE 1363
* @param n the BigInt to encode
* @param bytes the length of the resulting SecureVector<byte>
* @result a SecureVector<byte> containing the encoded BigInt
*/
static SecureVector<byte> encode_1363(const BigInt& n, u32bit bytes);
/**
* Swap BigInt-value with given BigInt.
* @param bigint the BigInt to swap values with
*/
void swap(BigInt& bigint);
/**
* Create empty BigInt
*/
BigInt() { signedness = Positive; }
/**
* Create BigInt from 64bit-Integer value
* @param n 64bit-integer
*/
BigInt(u64bit n);
/**
* Copy-Constructor: clone given BigInt
* @param bigint the BigInt to clone
*/
BigInt(const BigInt& bigint);
/**
* Create BigInt from a string.
* If the string starts with 0x the rest of the string will be
* interpreted as hexadecimal digits.
* If the string starts with 0 and the second character is NOT
* an 'x' the string will be interpreted as octal digits.
* If the string starts with non-zero digit, it will be
* interpreted as a decimal number.
* @param str the string to parse for an integer value
*/
BigInt(const std::string& str);
/**
* Create a BigInt from an integer in a byte array
* @param buf the BigInt value to compare to this.
* @param length size of buf
* @param base number-base of the integer in buf
*/
BigInt(const byte buf[], u32bit length, Base base = Binary);
/**
* Create a random BigInt of the specified size
* @param rng random number generator
* @param bits size in bits
*/
BigInt(RandomNumberGenerator& rng, u32bit bits);
/**
* Create BigInt of specified size, all zeros
* @param sign the sign
* @param n integer value
*/
BigInt(Sign sign, u32bit n);
/**
* Create a number of the specified type and size
* @param type the type of number to create
* @param n the size
*/
BigInt(NumberType type, u32bit n);
private:
SecureVector<word> reg;
Sign signedness;
};
/*
* Arithmetic Operators
*/
BigInt BOTAN_DLL operator+(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator-(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator*(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator/(const BigInt& x, const BigInt& d);
BigInt BOTAN_DLL operator%(const BigInt& x, const BigInt& m);
word BOTAN_DLL operator%(const BigInt& x, word m);
BigInt BOTAN_DLL operator<<(const BigInt& x, u32bit n);
BigInt BOTAN_DLL operator>>(const BigInt& x, u32bit n);
/*
* Comparison Operators
*/
inline bool operator==(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) == 0); }
inline bool operator!=(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) != 0); }
inline bool operator<=(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) <= 0); }
inline bool operator>=(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) >= 0); }
inline bool operator<(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) < 0); }
inline bool operator>(const BigInt& a, const BigInt& b)
{ return (a.cmp(b) > 0); }
/*
* I/O Operators
*/
BOTAN_DLL std::ostream& operator<<(std::ostream&, const BigInt&);
BOTAN_DLL std::istream& operator>>(std::istream&, BigInt&);
}
namespace std {
inline void swap(Botan::BigInt& a, Botan::BigInt& b) { a.swap(b); }
}
#endif
|