1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
/*
* BigInt Base
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/bigint.h>
#include <botan/mp_core.h>
#include <botan/loadstor.h>
#include <botan/parsing.h>
#include <botan/rounding.h>
namespace Botan {
/*
* Construct a BigInt from a regular number
*/
BigInt::BigInt(u64bit n)
{
set_sign(Positive);
if(n == 0)
return;
const u32bit limbs_needed = sizeof(u64bit) / sizeof(word);
reg.resize(4*limbs_needed);
for(u32bit j = 0; j != limbs_needed; ++j)
reg[j] = ((n >> (j*MP_WORD_BITS)) & MP_WORD_MASK);
}
/*
* Construct a BigInt of the specified size
*/
BigInt::BigInt(Sign s, u32bit size)
{
reg.resize(round_up(size, 8));
signedness = s;
}
/*
* Copy constructor
*/
BigInt::BigInt(const BigInt& b)
{
const u32bit b_words = b.sig_words();
if(b_words)
{
reg.resize(round_up(b_words, 8));
reg.copy(b.data(), b_words);
set_sign(b.sign());
}
else
{
reg.resize(2);
set_sign(Positive);
}
}
/*
* Construct a BigInt from a string
*/
BigInt::BigInt(const std::string& str)
{
Base base = Decimal;
u32bit markers = 0;
bool negative = false;
if(str.length() > 0 && str[0] == '-') { markers += 1; negative = true; }
if(str.length() > markers + 2 && str[markers ] == '0' &&
str[markers + 1] == 'x')
{ markers += 2; base = Hexadecimal; }
else if(str.length() > markers + 1 && str[markers] == '0')
{ markers += 1; base = Octal; }
*this = decode(reinterpret_cast<const byte*>(str.data()) + markers,
str.length() - markers, base);
if(negative) set_sign(Negative);
else set_sign(Positive);
}
/*
* Construct a BigInt from an encoded BigInt
*/
BigInt::BigInt(const byte input[], u32bit length, Base base)
{
set_sign(Positive);
*this = decode(input, length, base);
}
/*
* Construct a BigInt from an encoded BigInt
*/
BigInt::BigInt(RandomNumberGenerator& rng, u32bit bits)
{
set_sign(Positive);
randomize(rng, bits);
}
/**
* Move constructor
*/
BigInt::BigInt(BigInt&& other)
{
std::swap(*this, other);
}
/**
* Move assignment
*/
BigInt& BigInt::operator=(BigInt&& other)
{
if(this != &other)
std::swap(*this, other);
return (*this);
}
/*
* Swap this BigInt with another
*/
void BigInt::swap(BigInt& other)
{
reg.swap(other.reg);
std::swap(signedness, other.signedness);
}
/*
* Grow the internal storage
*/
void BigInt::grow_reg(u32bit n)
{
reg.grow_to(round_up(size() + n, 8));
}
/*
* Grow the internal storage
*/
void BigInt::grow_to(u32bit n)
{
if(n > size())
reg.grow_to(round_up(n, 8));
}
/*
* Comparison Function
*/
s32bit BigInt::cmp(const BigInt& n, bool check_signs) const
{
if(check_signs)
{
if(n.is_positive() && this->is_negative()) return -1;
if(n.is_negative() && this->is_positive()) return 1;
if(n.is_negative() && this->is_negative())
return (-bigint_cmp(data(), sig_words(), n.data(), n.sig_words()));
}
return bigint_cmp(data(), sig_words(), n.data(), n.sig_words());
}
/*
* Convert this number to a u32bit, if possible
*/
u32bit BigInt::to_u32bit() const
{
if(is_negative())
throw Encoding_Error("BigInt::to_u32bit: Number is negative");
if(bits() >= 32)
throw Encoding_Error("BigInt::to_u32bit: Number is too big to convert");
u32bit out = 0;
for(u32bit j = 0; j != 4; ++j)
out = (out << 8) | byte_at(3-j);
return out;
}
/*
* Return byte n of this number
*/
byte BigInt::byte_at(u32bit n) const
{
const u32bit WORD_BYTES = sizeof(word);
u32bit word_num = n / WORD_BYTES, byte_num = n % WORD_BYTES;
if(word_num >= size())
return 0;
else
return get_byte(WORD_BYTES - byte_num - 1, reg[word_num]);
}
/*
* Return bit n of this number
*/
bool BigInt::get_bit(u32bit n) const
{
return ((word_at(n / MP_WORD_BITS) >> (n % MP_WORD_BITS)) & 1);
}
/*
* Return bits {offset...offset+length}
*/
u32bit BigInt::get_substring(u32bit offset, u32bit length) const
{
if(length > 32)
throw Invalid_Argument("BigInt::get_substring: Substring size too big");
u64bit piece = 0;
for(u32bit j = 0; j != 8; ++j)
piece = (piece << 8) | byte_at((offset / 8) + (7-j));
u64bit mask = (1 << length) - 1;
u32bit shift = (offset % 8);
return static_cast<u32bit>((piece >> shift) & mask);
}
/*
* Set bit number n
*/
void BigInt::set_bit(u32bit n)
{
const u32bit which = n / MP_WORD_BITS;
const word mask = static_cast<word>(1) << (n % MP_WORD_BITS);
if(which >= size()) grow_to(which + 1);
reg[which] |= mask;
}
/*
* Clear bit number n
*/
void BigInt::clear_bit(u32bit n)
{
const u32bit which = n / MP_WORD_BITS;
const word mask = static_cast<word>(1) << (n % MP_WORD_BITS);
if(which < size())
reg[which] &= ~mask;
}
/*
* Clear all but the lowest n bits
*/
void BigInt::mask_bits(u32bit n)
{
if(n == 0) { clear(); return; }
if(n >= bits()) return;
const u32bit top_word = n / MP_WORD_BITS;
const word mask = (static_cast<word>(1) << (n % MP_WORD_BITS)) - 1;
if(top_word < size())
for(u32bit j = top_word + 1; j != size(); ++j)
reg[j] = 0;
reg[top_word] &= mask;
}
/*
* Count how many bytes are being used
*/
u32bit BigInt::bytes() const
{
return (bits() + 7) / 8;
}
/*
* Count how many bits are being used
*/
u32bit BigInt::bits() const
{
if(sig_words() == 0)
return 0;
u32bit full_words = sig_words() - 1, top_bits = MP_WORD_BITS;
word top_word = word_at(full_words), mask = MP_WORD_TOP_BIT;
while(top_bits && ((top_word & mask) == 0))
{ mask >>= 1; top_bits--; }
return (full_words * MP_WORD_BITS + top_bits);
}
/*
* Calcluate the size in a certain base
*/
u32bit BigInt::encoded_size(Base base) const
{
static const double LOG_2_BASE_10 = 0.30102999566;
if(base == Binary)
return bytes();
else if(base == Hexadecimal)
return 2*bytes();
else if(base == Octal)
return ((bits() + 2) / 3);
else if(base == Decimal)
return static_cast<u32bit>((bits() * LOG_2_BASE_10) + 1);
else
throw Invalid_Argument("Unknown base for BigInt encoding");
}
/*
* Set the sign
*/
void BigInt::set_sign(Sign s)
{
if(is_zero())
signedness = Positive;
else
signedness = s;
}
/*
* Reverse the value of the sign flag
*/
void BigInt::flip_sign()
{
set_sign(reverse_sign());
}
/*
* Return the opposite value of the current sign
*/
BigInt::Sign BigInt::reverse_sign() const
{
if(sign() == Positive)
return Negative;
return Positive;
}
/*
* Return the negation of this number
*/
BigInt BigInt::operator-() const
{
BigInt x = (*this);
x.flip_sign();
return x;
}
/*
* Return the absolute value of this number
*/
BigInt BigInt::abs() const
{
BigInt x = (*this);
x.set_sign(Positive);
return x;
}
/*
* Encode this number into bytes
*/
void BigInt::binary_encode(byte output[]) const
{
const u32bit sig_bytes = bytes();
for(u32bit j = 0; j != sig_bytes; ++j)
output[sig_bytes-j-1] = byte_at(j);
}
/*
* Set this number to the value in buf
*/
void BigInt::binary_decode(const byte buf[], u32bit length)
{
const u32bit WORD_BYTES = sizeof(word);
reg.resize(round_up((length / WORD_BYTES) + 1, 8));
for(u32bit j = 0; j != length / WORD_BYTES; ++j)
{
u32bit top = length - WORD_BYTES*j;
for(u32bit k = WORD_BYTES; k > 0; --k)
reg[j] = (reg[j] << 8) | buf[top - k];
}
for(u32bit j = 0; j != length % WORD_BYTES; ++j)
reg[length / WORD_BYTES] = (reg[length / WORD_BYTES] << 8) | buf[j];
}
/*
* Set this number to the value in buf
*/
void BigInt::binary_decode(const MemoryRegion<byte>& buf)
{
binary_decode(buf, buf.size());
}
}
|