1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/*
* X.509 Name Constraint
* (C) 2015 Kai Michaelis
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pkix_types.h>
#include <botan/ber_dec.h>
#include <botan/loadstor.h>
#include <botan/x509cert.h>
#include <botan/parsing.h>
#include <sstream>
namespace Botan {
class DER_Encoder;
GeneralName::GeneralName(const std::string& str) : GeneralName()
{
size_t p = str.find(':');
if(p != std::string::npos)
{
m_type = str.substr(0, p);
m_name = str.substr(p + 1, std::string::npos);
}
else
{
throw Invalid_Argument("Failed to decode Name Constraint");
}
}
void GeneralName::encode_into(DER_Encoder&) const
{
throw Not_Implemented("GeneralName encoding");
}
void GeneralName::decode_from(class BER_Decoder& ber)
{
BER_Object obj = ber.get_next_object();
if(obj.is_a(1, CONTEXT_SPECIFIC))
{
m_type = "RFC822";
m_name = ASN1::to_string(obj);
}
else if(obj.is_a(2, CONTEXT_SPECIFIC))
{
m_type = "DNS";
m_name = ASN1::to_string(obj);
}
else if(obj.is_a(6, CONTEXT_SPECIFIC))
{
m_type = "URI";
m_name = ASN1::to_string(obj);
}
else if(obj.is_a(4, ASN1_Tag(CONTEXT_SPECIFIC | CONSTRUCTED)))
{
m_type = "DN";
X509_DN dn;
BER_Decoder dec(obj);
std::stringstream ss;
dn.decode_from(dec);
ss << dn;
m_name = ss.str();
}
else if(obj.is_a(7, CONTEXT_SPECIFIC))
{
if(obj.length() == 8)
{
m_type = "IP";
m_name = ipv4_to_string(load_be<uint32_t>(obj.bits(), 0)) + "/" +
ipv4_to_string(load_be<uint32_t>(obj.bits(), 1));
}
else if(obj.length() == 32)
{
throw Decoding_Error("Unsupported IPv6 name constraint");
}
else
{
throw Decoding_Error("Invalid IP name constraint size " + std::to_string(obj.length()));
}
}
else
{
throw Decoding_Error("Found unknown GeneralName type");
}
}
GeneralName::MatchResult GeneralName::matches(const X509_Certificate& cert) const
{
std::vector<std::string> nam;
std::function<bool(const GeneralName*, const std::string&)> match_fn;
const X509_DN& dn = cert.subject_dn();
const AlternativeName& alt_name = cert.subject_alt_name();
if(type() == "DNS")
{
match_fn = std::mem_fn(&GeneralName::matches_dns);
nam = alt_name.get_attribute("DNS");
if(nam.empty())
{
nam = dn.get_attribute("CN");
}
}
else if(type() == "DN")
{
match_fn = std::mem_fn(&GeneralName::matches_dn);
nam.push_back(dn.to_string());
const auto alt_dn = alt_name.dn();
if(alt_dn.empty() == false)
{
nam.push_back(alt_dn.to_string());
}
}
else if(type() == "IP")
{
match_fn = std::mem_fn(&GeneralName::matches_ip);
nam = alt_name.get_attribute("IP");
}
else
{
return MatchResult::UnknownType;
}
if(nam.empty())
{
return MatchResult::NotFound;
}
bool some = false;
bool all = true;
for(const std::string& n: nam)
{
bool m = match_fn(this, n);
some |= m;
all &= m;
}
if(all)
{
return MatchResult::All;
}
else if(some)
{
return MatchResult::Some;
}
else
{
return MatchResult::None;
}
}
bool GeneralName::matches_dns(const std::string& nam) const
{
if(nam.size() == name().size())
{
return nam == name();
}
else if(name().size() > nam.size())
{
return false;
}
else // name.size() < nam.size()
{
std::string constr = name().front() == '.' ? name() : "." + name();
// constr is suffix of nam
return constr == nam.substr(nam.size() - constr.size(), constr.size());
}
}
bool GeneralName::matches_dn(const std::string& nam) const
{
std::stringstream ss(nam);
std::stringstream tt(name());
X509_DN nam_dn, my_dn;
ss >> nam_dn;
tt >> my_dn;
auto attr = nam_dn.get_attributes();
bool ret = true;
size_t trys = 0;
for(const auto& c: my_dn.dn_info())
{
auto i = attr.equal_range(c.first);
if(i.first != i.second)
{
trys += 1;
ret = ret && (i.first->second == c.second.value());
}
}
return trys > 0 && ret;
}
bool GeneralName::matches_ip(const std::string& nam) const
{
uint32_t ip = string_to_ipv4(nam);
std::vector<std::string> p = split_on(name(), '/');
if(p.size() != 2)
throw Decoding_Error("failed to parse IPv4 address");
uint32_t net = string_to_ipv4(p.at(0));
uint32_t mask = string_to_ipv4(p.at(1));
return (ip & mask) == net;
}
std::ostream& operator<<(std::ostream& os, const GeneralName& gn)
{
os << gn.type() << ":" << gn.name();
return os;
}
GeneralSubtree::GeneralSubtree(const std::string& str) : GeneralSubtree()
{
size_t p0, p1;
const auto min = std::stoull(str, &p0, 10);
const auto max = std::stoull(str.substr(p0 + 1), &p1, 10);
GeneralName gn(str.substr(p0 + p1 + 2));
if(p0 > 0 && p1 > 0)
{
m_minimum = static_cast<size_t>(min);
m_maximum = static_cast<size_t>(max);
m_base = gn;
}
else
{
throw Invalid_Argument("Failed to decode Name Constraint");
}
}
void GeneralSubtree::encode_into(DER_Encoder&) const
{
throw Not_Implemented("General Subtree encoding");
}
void GeneralSubtree::decode_from(class BER_Decoder& ber)
{
ber.start_cons(SEQUENCE)
.decode(m_base)
.decode_optional(m_minimum,ASN1_Tag(0), CONTEXT_SPECIFIC,size_t(0))
.end_cons();
if(m_minimum != 0)
throw Decoding_Error("GeneralSubtree minimum must be 0");
m_maximum = std::numeric_limits<std::size_t>::max();
}
std::ostream& operator<<(std::ostream& os, const GeneralSubtree& gs)
{
os << gs.minimum() << "," << gs.maximum() << "," << gs.base();
return os;
}
}
|