aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/utils/simd/simd_32.h
blob: 591e0e9c94380131cdbb9b189b47c8aa18f9a7bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
* Lightweight wrappers for SIMD operations
* (C) 2009,2011,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_SIMD_32_H__
#define BOTAN_SIMD_32_H__

#include <botan/types.h>
#include <botan/loadstor.h>
#include <botan/bswap.h>

#if defined(BOTAN_TARGET_SUPPORTS_SSE2)
  #include <emmintrin.h>
  #define BOTAN_SIMD_USE_SSE2

#elif defined(BOTAN_TARGET_SUPPORTS_ALTIVEC)
  #include <altivec.h>
  #undef vector
  #undef bool
  #define BOTAN_SIMD_USE_ALTIVEC
#endif

// TODO: NEON support

namespace Botan {

/**
* This class is not a general purpose SIMD type, and only offers
* instructions needed for evaluation of specific crypto primitives.
* For example it does not currently have equality operators of any
* kind.
*/
class SIMD_4x32
   {
   public:

      SIMD_4x32() // zero initialized
         {
#if defined(BOTAN_SIMD_USE_SSE2) || defined(BOTAN_SIMD_USE_ALTIVEC)
         ::memset(&m_reg, 0, sizeof(m_reg));
#else
         ::memset(m_reg, 0, sizeof(m_reg));
#endif
         }

      explicit SIMD_4x32(const uint32_t B[4])
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_loadu_si128(reinterpret_cast<const __m128i*>(B));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = (__vector unsigned int){B[0], B[1], B[2], B[3]};
#else
         m_reg[0] = B[0];
         m_reg[1] = B[1];
         m_reg[2] = B[2];
         m_reg[3] = B[3];
#endif
         }

      SIMD_4x32(uint32_t B0, uint32_t B1, uint32_t B2, uint32_t B3)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_set_epi32(B0, B1, B2, B3);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = (__vector unsigned int){B0, B1, B2, B3};
#else
         m_reg[0] = B0;
         m_reg[1] = B1;
         m_reg[2] = B2;
         m_reg[3] = B3;
#endif
         }

      explicit SIMD_4x32(uint32_t B)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_set1_epi32(B);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = (__vector unsigned int){B, B, B, B};
#else
         m_reg[0] = B;
         m_reg[1] = B;
         m_reg[2] = B;
         m_reg[3] = B;
#endif
         }

      static SIMD_4x32 load_le(const void* in)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_loadu_si128(reinterpret_cast<const __m128i*>(in)));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         const uint32_t* in_32 = static_cast<const uint32_t*>(in);

         __vector unsigned int R0 = vec_ld(0, in_32);
         __vector unsigned int R1 = vec_ld(12, in_32);

         __vector unsigned char perm = vec_lvsl(0, in_32);

#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
         perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector
#endif

         R0 = vec_perm(R0, R1, perm);

         return SIMD_4x32(R0);
#else
         SIMD_4x32 out;
         Botan::load_le(out.m_reg, static_cast<const uint8_t*>(in), 4);
         return out;
#endif
         }

      static SIMD_4x32 load_be(const void* in)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return load_le(in).bswap();
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         const uint32_t* in_32 = static_cast<const uint32_t*>(in);

         __vector unsigned int R0 = vec_ld(0, in_32);
         __vector unsigned int R1 = vec_ld(12, in_32);

         __vector unsigned char perm = vec_lvsl(0, in_32);

#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
         perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector
#endif

         R0 = vec_perm(R0, R1, perm);

         return SIMD_4x32(R0);

#else
         SIMD_4x32 out;
         Botan::load_be(out.m_reg, static_cast<const uint8_t*>(in), 4);
         return out;
#endif
         }

      void store_le(uint8_t out[]) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         _mm_storeu_si128(reinterpret_cast<__m128i*>(out), m_reg);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         __vector unsigned char perm = vec_lvsl(0, static_cast<uint32_t*>(nullptr));

#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
         perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector
#endif

         union {
            __vector unsigned int V;
            uint32_t R[4];
            } vec;

         vec.V = vec_perm(m_reg, m_reg, perm);

         Botan::store_be(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]);
#else
         Botan::store_le(out, m_reg[0], m_reg[1], m_reg[2], m_reg[3]);
#endif
         }

      void store_be(uint8_t out[]) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         bswap().store_le(out);

#elif defined(BOTAN_SIMD_USE_ALTIVEC)

         union {
            __vector unsigned int V;
            uint32_t R[4];
            } vec;

         vec.V = m_reg;

         Botan::store_be(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]);
#else
         Botan::store_be(out, m_reg[0], m_reg[1], m_reg[2], m_reg[3]);
#endif
         }

      void rotate_left(size_t rot)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_or_si128(_mm_slli_epi32(m_reg, static_cast<int>(rot)),
                              _mm_srli_epi32(m_reg, static_cast<int>(32-rot)));

#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         const unsigned int r = static_cast<unsigned int>(rot);
         m_reg = vec_rl(m_reg, (__vector unsigned int){r, r, r, r});

#else
         m_reg[0] = Botan::rotate_left(m_reg[0], rot);
         m_reg[1] = Botan::rotate_left(m_reg[1], rot);
         m_reg[2] = Botan::rotate_left(m_reg[2], rot);
         m_reg[3] = Botan::rotate_left(m_reg[3], rot);
#endif
         }

      void rotate_right(size_t rot)
         {
         rotate_left(32 - rot);
         }

      void operator+=(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_add_epi32(m_reg, other.m_reg);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = vec_add(m_reg, other.m_reg);
#else
         m_reg[0] += other.m_reg[0];
         m_reg[1] += other.m_reg[1];
         m_reg[2] += other.m_reg[2];
         m_reg[3] += other.m_reg[3];
#endif
         }

      SIMD_4x32 operator+(const SIMD_4x32& other) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_add_epi32(m_reg, other.m_reg));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         return SIMD_4x32(vec_add(m_reg, other.m_reg));
#else
         return SIMD_4x32(m_reg[0] + other.m_reg[0],
                          m_reg[1] + other.m_reg[1],
                          m_reg[2] + other.m_reg[2],
                          m_reg[3] + other.m_reg[3]);
#endif
         }

      void operator-=(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_sub_epi32(m_reg, other.m_reg);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = vec_sub(m_reg, other.m_reg);
#else
         m_reg[0] -= other.m_reg[0];
         m_reg[1] -= other.m_reg[1];
         m_reg[2] -= other.m_reg[2];
         m_reg[3] -= other.m_reg[3];
#endif
         }

      SIMD_4x32 operator-(const SIMD_4x32& other) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_sub_epi32(m_reg, other.m_reg));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         return SIMD_4x32(vec_sub(m_reg, other.m_reg));
#else
         return SIMD_4x32(m_reg[0] - other.m_reg[0],
                          m_reg[1] - other.m_reg[1],
                          m_reg[2] - other.m_reg[2],
                          m_reg[3] - other.m_reg[3]);
#endif
         }

      void operator^=(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_xor_si128(m_reg, other.m_reg);

#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = vec_xor(m_reg, other.m_reg);
#else
         m_reg[0] ^= other.m_reg[0];
         m_reg[1] ^= other.m_reg[1];
         m_reg[2] ^= other.m_reg[2];
         m_reg[3] ^= other.m_reg[3];
#endif
         }

      SIMD_4x32 operator^(const SIMD_4x32& other) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_xor_si128(m_reg, other.m_reg));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         return SIMD_4x32(vec_xor(m_reg, other.m_reg));
#else
         return SIMD_4x32(m_reg[0] ^ other.m_reg[0],
                          m_reg[1] ^ other.m_reg[1],
                          m_reg[2] ^ other.m_reg[2],
                          m_reg[3] ^ other.m_reg[3]);
#endif
         }

      void operator|=(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_or_si128(m_reg, other.m_reg);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = vec_or(m_reg, other.m_reg);
#else
         m_reg[0] |= other.m_reg[0];
         m_reg[1] |= other.m_reg[1];
         m_reg[2] |= other.m_reg[2];
         m_reg[3] |= other.m_reg[3];
#endif
         }

      SIMD_4x32 operator&(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_and_si128(m_reg, other.m_reg));

#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         return SIMD_4x32(vec_and(m_reg, other.m_reg));
#else
         return SIMD_4x32(m_reg[0] & other.m_reg[0],
                          m_reg[1] & other.m_reg[1],
                          m_reg[2] & other.m_reg[2],
                          m_reg[3] & other.m_reg[3]);
#endif
         }

      void operator&=(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         m_reg = _mm_and_si128(m_reg, other.m_reg);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         m_reg = vec_and(m_reg, other.m_reg);
#else
         m_reg[0] &= other.m_reg[0];
         m_reg[1] &= other.m_reg[1];
         m_reg[2] &= other.m_reg[2];
         m_reg[3] &= other.m_reg[3];
#endif
         }

      SIMD_4x32 operator<<(size_t shift) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_slli_epi32(m_reg, static_cast<int>(shift)));

#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         const unsigned int s = static_cast<unsigned int>(shift);
         return SIMD_4x32(vec_sl(m_reg, (__vector unsigned int){s, s, s, s}));
#else
         return SIMD_4x32(m_reg[0] << shift,
                          m_reg[1] << shift,
                          m_reg[2] << shift,
                          m_reg[3] << shift);
#endif
         }

      SIMD_4x32 operator>>(size_t shift) const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_srli_epi32(m_reg, static_cast<int>(shift)));

#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         const unsigned int s = static_cast<unsigned int>(shift);
         return SIMD_4x32(vec_sr(m_reg, (__vector unsigned int){s, s, s, s}));
#else
         return SIMD_4x32(m_reg[0] >> shift,
                          m_reg[1] >> shift,
                          m_reg[2] >> shift,
                          m_reg[3] >> shift);

#endif
         }

      SIMD_4x32 operator~() const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_xor_si128(m_reg, _mm_set1_epi32(0xFFFFFFFF)));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         return SIMD_4x32(vec_nor(m_reg, m_reg));
#else
         return SIMD_4x32(~m_reg[0],
                          ~m_reg[1],
                          ~m_reg[2],
                          ~m_reg[3]);
#endif
         }

      // (~reg) & other
      SIMD_4x32 andc(const SIMD_4x32& other)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         return SIMD_4x32(_mm_andnot_si128(m_reg, other.m_reg));
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         /*
         AltiVec does arg1 & ~arg2 rather than SSE's ~arg1 & arg2
         so swap the arguments
         */
         return SIMD_4x32(vec_andc(other.m_reg, m_reg));
#else
         return SIMD_4x32((~m_reg[0]) & other.m_reg[0],
                          (~m_reg[1]) & other.m_reg[1],
                          (~m_reg[2]) & other.m_reg[2],
                          (~m_reg[3]) & other.m_reg[3]);
#endif
         }

      SIMD_4x32 bswap() const
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         __m128i T = m_reg;

         T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
         T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));

         return SIMD_4x32(_mm_or_si128(_mm_srli_epi16(T, 8),
                                       _mm_slli_epi16(T, 8)));

#elif defined(BOTAN_SIMD_USE_ALTIVEC)

         __vector unsigned char perm = vec_lvsl(0, static_cast<uint32_t*>(nullptr));

         perm = vec_xor(perm, vec_splat_u8(3));

         return SIMD_4x32(vec_perm(m_reg, m_reg, perm));
#else
         return SIMD_4x32(reverse_bytes(m_reg[0]),
                          reverse_bytes(m_reg[1]),
                          reverse_bytes(m_reg[2]),
                          reverse_bytes(m_reg[3]));
#endif
         }

      static void transpose(SIMD_4x32& B0, SIMD_4x32& B1,
                            SIMD_4x32& B2, SIMD_4x32& B3)
         {
#if defined(BOTAN_SIMD_USE_SSE2)
         __m128i T0 = _mm_unpacklo_epi32(B0.m_reg, B1.m_reg);
         __m128i T1 = _mm_unpacklo_epi32(B2.m_reg, B3.m_reg);
         __m128i T2 = _mm_unpackhi_epi32(B0.m_reg, B1.m_reg);
         __m128i T3 = _mm_unpackhi_epi32(B2.m_reg, B3.m_reg);
         B0.m_reg = _mm_unpacklo_epi64(T0, T1);
         B1.m_reg = _mm_unpackhi_epi64(T0, T1);
         B2.m_reg = _mm_unpacklo_epi64(T2, T3);
         B3.m_reg = _mm_unpackhi_epi64(T2, T3);
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
         __vector unsigned int T0 = vec_mergeh(B0.m_reg, B2.m_reg);
         __vector unsigned int T1 = vec_mergel(B0.m_reg, B2.m_reg);
         __vector unsigned int T2 = vec_mergeh(B1.m_reg, B3.m_reg);
         __vector unsigned int T3 = vec_mergel(B1.m_reg, B3.m_reg);

         B0.m_reg = vec_mergeh(T0, T2);
         B1.m_reg = vec_mergel(T0, T2);
         B2.m_reg = vec_mergeh(T1, T3);
         B3.m_reg = vec_mergel(T1, T3);
#else
         SIMD_4x32 T0(B0.m_reg[0], B1.m_reg[0], B2.m_reg[0], B3.m_reg[0]);
         SIMD_4x32 T1(B0.m_reg[1], B1.m_reg[1], B2.m_reg[1], B3.m_reg[1]);
         SIMD_4x32 T2(B0.m_reg[2], B1.m_reg[2], B2.m_reg[2], B3.m_reg[2]);
         SIMD_4x32 T3(B0.m_reg[3], B1.m_reg[3], B2.m_reg[3], B3.m_reg[3]);

         B0 = T0;
         B1 = T1;
         B2 = T2;
         B3 = T3;
#endif
         }

   private:
#if defined(BOTAN_SIMD_USE_SSE2)
      explicit SIMD_4x32(__m128i in) { m_reg = in; }
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
      explicit SIMD_4x32(__vector unsigned int input) { m_reg = input; }
#endif

#if defined(BOTAN_SIMD_USE_SSE2)
      __m128i m_reg;
#elif defined(BOTAN_SIMD_USE_ALTIVEC)
      __vector unsigned int m_reg;
#else
      uint32_t m_reg[4];
#endif
   };

typedef SIMD_4x32 SIMD_32;

}

#endif