1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/*
* OS and machine specific utility functions
* (C) 2015,2016 Jack Lloyd
* (C) 2016 Daniel Neus
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/os_utils.h>
#include <botan/cpuid.h>
#include <botan/exceptn.h>
#include <botan/mem_ops.h>
#include <chrono>
#if defined(BOTAN_TARGET_OS_TYPE_IS_UNIX)
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <unistd.h>
#endif
#if defined(BOTAN_TARGET_OS_IS_WINDOWS)
#include <windows.h>
#endif
namespace Botan {
namespace OS {
uint32_t get_process_id()
{
#if defined(BOTAN_TARGET_OS_TYPE_IS_UNIX)
return ::getpid();
#elif defined(BOTAN_TARGET_OS_IS_WINDOWS)
return ::GetCurrentProcessId();
#else
throw Exception("get_process_id not supported");
#endif
}
uint64_t get_processor_timestamp()
{
uint64_t rtc = 0;
#if defined(BOTAN_TARGET_OS_HAS_QUERY_PERF_COUNTER)
LARGE_INTEGER tv;
::QueryPerformanceCounter(&tv);
rtc = tv.QuadPart;
#endif
#if defined(BOTAN_USE_GCC_INLINE_ASM)
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
if(CPUID::has_rdtsc()) // not available on all x86 CPUs
{
uint32_t rtc_low = 0, rtc_high = 0;
asm volatile("rdtsc" : "=d" (rtc_high), "=a" (rtc_low));
rtc = (static_cast<u64bit>(rtc_high) << 32) | rtc_low;
}
#elif defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
uint32_t rtc_low = 0, rtc_high = 0;
asm volatile("mftbu %0; mftb %1" : "=r" (rtc_high), "=r" (rtc_low));
rtc = (static_cast<u64bit>(rtc_high) << 32) | rtc_low;
#elif defined(BOTAN_TARGET_ARCH_IS_ALPHA)
asm volatile("rpcc %0" : "=r" (rtc));
#elif defined(BOTAN_TARGET_ARCH_IS_SPARC64) && !defined(BOTAN_TARGET_OS_IS_OPENBSD)
// OpenBSD does not trap access to the %tick register
asm volatile("rd %%tick, %0" : "=r" (rtc));
#elif defined(BOTAN_TARGET_ARCH_IS_IA64)
asm volatile("mov %0=ar.itc" : "=r" (rtc));
#elif defined(BOTAN_TARGET_ARCH_IS_S390X)
asm volatile("stck 0(%0)" : : "a" (&rtc) : "memory", "cc");
#elif defined(BOTAN_TARGET_ARCH_IS_HPPA)
asm volatile("mfctl 16,%0" : "=r" (rtc)); // 64-bit only?
#endif
#endif
return rtc;
}
uint64_t get_system_timestamp_ns()
{
#if defined(BOTAN_TARGET_OS_HAS_CLOCK_GETTIME)
struct timespec ts;
if(::clock_gettime(CLOCK_REALTIME, &ts) == 0)
{
return (static_cast<uint64_t>(ts.tv_sec) * 1000000000) + static_cast<uint64_t>(ts.tv_nsec);
}
#endif
auto now = std::chrono::system_clock::now().time_since_epoch();
return std::chrono::duration_cast<std::chrono::nanoseconds>(now).count();
}
size_t get_memory_locking_limit()
{
#if defined(BOTAN_TARGET_OS_HAS_POSIX_MLOCK)
/*
* Linux defaults to only 64 KiB of mlockable memory per process
* (too small) but BSDs offer a small fraction of total RAM (more
* than we need). Bound the total mlock size to 512 KiB which is
* enough to run the entire test suite without spilling to non-mlock
* memory (and thus presumably also enough for many useful
* programs), but small enough that we should not cause problems
* even if many processes are mlocking on the same machine.
*/
size_t mlock_requested = BOTAN_MLOCK_ALLOCATOR_MAX_LOCKED_KB;
/*
* Allow override via env variable
*/
if(const char* env = ::getenv("BOTAN_MLOCK_POOL_SIZE"))
{
try
{
const size_t user_req = std::stoul(env, nullptr);
mlock_requested = std::min(user_req, mlock_requested);
}
catch(std::exception&) { /* ignore it */ }
}
if(mlock_requested > 0)
{
struct ::rlimit limits;
::getrlimit(RLIMIT_MEMLOCK, &limits);
if(limits.rlim_cur < limits.rlim_max)
{
limits.rlim_cur = limits.rlim_max;
::setrlimit(RLIMIT_MEMLOCK, &limits);
::getrlimit(RLIMIT_MEMLOCK, &limits);
}
return std::min<size_t>(limits.rlim_cur, mlock_requested * 1024);
}
#elif defined(BOTAN_TARGET_OS_HAS_VIRTUAL_LOCK) && defined(BOTAN_BUILD_COMPILER_IS_MSVC)
SIZE_T working_min = 0, working_max = 0;
DWORD working_flags = 0;
if(!::GetProcessWorkingSetSizeEx(::GetCurrentProcess(), &working_min, &working_max, &working_flags))
{
return 0;
}
SYSTEM_INFO sSysInfo;
::GetSystemInfo(&sSysInfo);
// According to Microsoft MSDN:
// The maximum number of pages that a process can lock is equal to the number of pages in its minimum working set minus a small overhead
// In the book "Windows Internals Part 2": the maximum lockable pages are minimum working set size - 8 pages
// But the information in the book seems to be inaccurate/outdated
// I've tested this on Windows 8.1 x64, Windows 10 x64 and Windows 7 x86
// On all three OS the value is 11 instead of 8
size_t overhead = sSysInfo.dwPageSize * 11ULL;
if(working_min > overhead)
{
size_t lockable_bytes = working_min - overhead;
if(lockable_bytes < (BOTAN_MLOCK_ALLOCATOR_MAX_LOCKED_KB * 1024ULL))
{
return lockable_bytes;
}
else
{
return BOTAN_MLOCK_ALLOCATOR_MAX_LOCKED_KB * 1024ULL;
}
}
#endif
return 0;
}
void* allocate_locked_pages(size_t length)
{
#if defined(BOTAN_TARGET_OS_HAS_POSIX_MLOCK)
#if !defined(MAP_NOCORE)
#define MAP_NOCORE 0
#endif
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
void* ptr = ::mmap(nullptr,
length,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED | MAP_NOCORE,
/*fd*/-1,
/*offset*/0);
if(ptr == MAP_FAILED)
{
return nullptr;
}
#if defined(MADV_DONTDUMP)
::madvise(ptr, length, MADV_DONTDUMP);
#endif
if(::mlock(ptr, length) != 0)
{
::munmap(ptr, length);
return nullptr; // failed to lock
}
::memset(ptr, 0, length);
return ptr;
#elif defined BOTAN_TARGET_OS_HAS_VIRTUAL_LOCK
LPVOID ptr = ::VirtualAlloc(nullptr, length, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if(!ptr)
{
return nullptr;
}
if(::VirtualLock(ptr, length) == 0)
{
::VirtualFree(ptr, 0, MEM_RELEASE);
return nullptr; // failed to lock
}
return ptr;
#else
return nullptr; /* not implemented */
#endif
}
void free_locked_pages(void* ptr, size_t length)
{
if(ptr == nullptr || length == 0)
return;
#if defined(BOTAN_TARGET_OS_HAS_POSIX_MLOCK)
zero_mem(ptr, length);
::munlock(ptr, length);
::munmap(ptr, length);
#elif defined BOTAN_TARGET_OS_HAS_VIRTUAL_LOCK
zero_mem(ptr, length);
::VirtualUnlock(ptr, length);
::VirtualFree(ptr, 0, MEM_RELEASE);
#else
// Invalid argument because no way this pointer was allocated by us
throw Invalid_Argument("Invalid ptr to free_locked_pages");
#endif
}
}
}
|