1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* Memory Operations
* (C) 1999-2009,2012,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_MEMORY_OPS_H_
#define BOTAN_MEMORY_OPS_H_
#include <botan/types.h>
#include <cstring>
#include <vector>
namespace Botan {
/**
* Allocate a memory buffer by some method. This should only be used for
* primitive types (uint8_t, uint32_t, etc).
*
* @param elems the number of elements
* @param elem_size the size of each element
* @return pointer to allocated and zeroed memory, or throw std::bad_alloc on failure
*/
BOTAN_PUBLIC_API(2,3) BOTAN_MALLOC_FN void* allocate_memory(size_t elems, size_t elem_size);
/**
* Free a pointer returned by allocate_memory
* @param p the pointer returned by allocate_memory
* @param elems the number of elements, as passed to allocate_memory
* @param elem_size the size of each element, as passed to allocate_memory
*/
BOTAN_PUBLIC_API(2,3) void deallocate_memory(void* p, size_t elems, size_t elem_size);
/**
* Ensure the allocator is initialized
*/
void initialize_allocator();
/**
* Scrub memory contents in a way that a compiler should not elide,
* using some system specific technique. Note that this function might
* not zero the memory (for example, in some hypothetical
* implementation it might combine the memory contents with the output
* of a system PRNG), but if you can detect any difference in behavior
* at runtime then the clearing is side-effecting and you can just
* use `clear_mem`.
*
* Use this function to scrub memory just before deallocating it, or on
* a stack buffer before returning from the function.
*
* @param ptr a pointer to memory to scrub
* @param n the number of bytes pointed to by ptr
*/
BOTAN_PUBLIC_API(2,0) void secure_scrub_memory(void* ptr, size_t n);
/**
* Memory comparison, input insensitive
* @param x a pointer to an array
* @param y a pointer to another array
* @param len the number of Ts in x and y
* @return true iff x[i] == y[i] forall i in [0...n)
*/
BOTAN_PUBLIC_API(2,3) bool constant_time_compare(const uint8_t x[],
const uint8_t y[],
size_t len);
/**
* Zero out some bytes
* @param ptr a pointer to memory to zero
* @param bytes the number of bytes to zero in ptr
*/
inline void clear_bytes(void* ptr, size_t bytes)
{
if(bytes > 0)
{
std::memset(ptr, 0, bytes);
}
}
/**
* Zero memory before use. This simply calls memset and should not be
* used in cases where the compiler cannot see the call as a
* side-effecting operation (for example, if calling clear_mem before
* deallocating memory, the compiler would be allowed to omit the call
* to memset entirely under the as-if rule.)
*
* @param ptr a pointer to an array of Ts to zero
* @param n the number of Ts pointed to by ptr
*/
template<typename T> inline void clear_mem(T* ptr, size_t n)
{
clear_bytes(ptr, sizeof(T)*n);
}
/**
* Copy memory
* @param out the destination array
* @param in the source array
* @param n the number of elements of in/out
*/
template<typename T> inline void copy_mem(T* out, const T* in, size_t n)
{
if(n > 0)
{
std::memmove(out, in, sizeof(T)*n);
}
}
/**
* Set memory to a fixed value
* @param ptr a pointer to an array
* @param n the number of Ts pointed to by ptr
* @param val the value to set each byte to
*/
template<typename T>
inline void set_mem(T* ptr, size_t n, uint8_t val)
{
if(n > 0)
{
std::memset(ptr, val, sizeof(T)*n);
}
}
inline const uint8_t* cast_char_ptr_to_uint8(const char* s)
{
return reinterpret_cast<const uint8_t*>(s);
}
inline const char* cast_uint8_ptr_to_char(const uint8_t* b)
{
return reinterpret_cast<const char*>(b);
}
inline uint8_t* cast_char_ptr_to_uint8(char* s)
{
return reinterpret_cast<uint8_t*>(s);
}
inline char* cast_uint8_ptr_to_char(uint8_t* b)
{
return reinterpret_cast<char*>(b);
}
/**
* Memory comparison, input insensitive
* @param p1 a pointer to an array
* @param p2 a pointer to another array
* @param n the number of Ts in p1 and p2
* @return true iff p1[i] == p2[i] forall i in [0...n)
*/
template<typename T> inline bool same_mem(const T* p1, const T* p2, size_t n)
{
volatile T difference = 0;
for(size_t i = 0; i != n; ++i)
difference |= (p1[i] ^ p2[i]);
return difference == 0;
}
/**
* XOR arrays. Postcondition out[i] = in[i] ^ out[i] forall i = 0...length
* @param out the input/output buffer
* @param in the read-only input buffer
* @param length the length of the buffers
*/
inline void xor_buf(uint8_t out[],
const uint8_t in[],
size_t length)
{
while(length >= 16)
{
uint64_t x0, x1, y0, y1;
std::memcpy(&x0, in, 8);
std::memcpy(&x1, in + 8, 8);
std::memcpy(&y0, out, 8);
std::memcpy(&y1, out + 8, 8);
y0 ^= x0;
y1 ^= x1;
std::memcpy(out, &y0, 8);
std::memcpy(out + 8, &y1, 8);
out += 16; in += 16; length -= 16;
}
while(length > 0)
{
out[0] ^= in[0];
out += 1;
in += 1;
length -= 1;
}
}
/**
* XOR arrays. Postcondition out[i] = in[i] ^ in2[i] forall i = 0...length
* @param out the output buffer
* @param in the first input buffer
* @param in2 the second output buffer
* @param length the length of the three buffers
*/
inline void xor_buf(uint8_t out[],
const uint8_t in[],
const uint8_t in2[],
size_t length)
{
while(length >= 16)
{
uint64_t x0, x1, y0, y1;
std::memcpy(&x0, in, 8);
std::memcpy(&x1, in + 8, 8);
std::memcpy(&y0, in2, 8);
std::memcpy(&y1, in2 + 8, 8);
x0 ^= y0;
x1 ^= y1;
std::memcpy(out, &x0, 8);
std::memcpy(out + 8, &x1, 8);
out += 16; in += 16; in2 += 16; length -= 16;
}
for(size_t i = 0; i != length; ++i)
out[i] = in[i] ^ in2[i];
}
template<typename Alloc, typename Alloc2>
void xor_buf(std::vector<uint8_t, Alloc>& out,
const std::vector<uint8_t, Alloc2>& in,
size_t n)
{
xor_buf(out.data(), in.data(), n);
}
template<typename Alloc>
void xor_buf(std::vector<uint8_t, Alloc>& out,
const uint8_t* in,
size_t n)
{
xor_buf(out.data(), in, n);
}
template<typename Alloc, typename Alloc2>
void xor_buf(std::vector<uint8_t, Alloc>& out,
const uint8_t* in,
const std::vector<uint8_t, Alloc2>& in2,
size_t n)
{
xor_buf(out.data(), in, in2.data(), n);
}
template<typename Alloc, typename Alloc2>
std::vector<uint8_t, Alloc>&
operator^=(std::vector<uint8_t, Alloc>& out,
const std::vector<uint8_t, Alloc2>& in)
{
if(out.size() < in.size())
out.resize(in.size());
xor_buf(out.data(), in.data(), in.size());
return out;
}
}
#endif
|