1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
/*
* Load/Store Operators
* (C) 1999-2007 Jack Lloyd
* 2007 Yves Jerschow
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_LOAD_STORE_H__
#define BOTAN_LOAD_STORE_H__
#include <botan/types.h>
#include <botan/bswap.h>
#include <botan/get_byte.h>
#include <cstring>
#include <vector>
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
#define BOTAN_ENDIAN_N2B(x) (x)
#define BOTAN_ENDIAN_B2N(x) (x)
#define BOTAN_ENDIAN_N2L(x) reverse_bytes(x)
#define BOTAN_ENDIAN_L2N(x) reverse_bytes(x)
#elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
#define BOTAN_ENDIAN_N2L(x) (x)
#define BOTAN_ENDIAN_L2N(x) (x)
#define BOTAN_ENDIAN_N2B(x) reverse_bytes(x)
#define BOTAN_ENDIAN_B2N(x) reverse_bytes(x)
#endif
#endif
namespace Botan {
/**
* Make a u16bit from two bytes
* @param i0 the first byte
* @param i1 the second byte
* @return i0 || i1
*/
inline u16bit make_u16bit(byte i0, byte i1)
{
return ((static_cast<u16bit>(i0) << 8) | i1);
}
/**
* Make a u32bit from four bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @return i0 || i1 || i2 || i3
*/
inline u32bit make_u32bit(byte i0, byte i1, byte i2, byte i3)
{
return ((static_cast<u32bit>(i0) << 24) |
(static_cast<u32bit>(i1) << 16) |
(static_cast<u32bit>(i2) << 8) |
(static_cast<u32bit>(i3)));
}
/**
* Make a u32bit from eight bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @param i4 the fifth byte
* @param i5 the sixth byte
* @param i6 the seventh byte
* @param i7 the eighth byte
* @return i0 || i1 || i2 || i3 || i4 || i5 || i6 || i7
*/
inline u64bit make_u64bit(byte i0, byte i1, byte i2, byte i3,
byte i4, byte i5, byte i6, byte i7)
{
return ((static_cast<u64bit>(i0) << 56) |
(static_cast<u64bit>(i1) << 48) |
(static_cast<u64bit>(i2) << 40) |
(static_cast<u64bit>(i3) << 32) |
(static_cast<u64bit>(i4) << 24) |
(static_cast<u64bit>(i5) << 16) |
(static_cast<u64bit>(i6) << 8) |
(static_cast<u64bit>(i7)));
}
/**
* Load a big-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a big-endian value
*/
template<typename T>
inline T load_be(const byte in[], size_t off)
{
in += off * sizeof(T);
T out = 0;
for(size_t i = 0; i != sizeof(T); ++i)
out = (out << 8) | in[i];
return out;
}
/**
* Load a little-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a litte-endian value
*/
template<typename T>
inline T load_le(const byte in[], size_t off)
{
in += off * sizeof(T);
T out = 0;
for(size_t i = 0; i != sizeof(T); ++i)
out = (out << 8) | in[sizeof(T)-1-i];
return out;
}
/**
* Load a big-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a big-endian value
*/
template<>
inline u16bit load_be<u16bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u16bit*>(in) + off));
#else
in += off * sizeof(u16bit);
return make_u16bit(in[0], in[1]);
#endif
}
/**
* Load a little-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a little-endian value
*/
template<>
inline u16bit load_le<u16bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u16bit*>(in) + off));
#else
in += off * sizeof(u16bit);
return make_u16bit(in[1], in[0]);
#endif
}
/**
* Load a big-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a big-endian value
*/
template<>
inline u32bit load_be<u32bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u32bit*>(in) + off));
#else
in += off * sizeof(u32bit);
return make_u32bit(in[0], in[1], in[2], in[3]);
#endif
}
/**
* Load a little-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a little-endian value
*/
template<>
inline u32bit load_le<u32bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u32bit*>(in) + off));
#else
in += off * sizeof(u32bit);
return make_u32bit(in[3], in[2], in[1], in[0]);
#endif
}
/**
* Load a big-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a big-endian value
*/
template<>
inline u64bit load_be<u64bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u64bit*>(in) + off));
#else
in += off * sizeof(u64bit);
return make_u64bit(in[0], in[1], in[2], in[3],
in[4], in[5], in[6], in[7]);
#endif
}
/**
* Load a little-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a little-endian value
*/
template<>
inline u64bit load_le<u64bit>(const byte in[], size_t off)
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u64bit*>(in) + off));
#else
in += off * sizeof(u64bit);
return make_u64bit(in[7], in[6], in[5], in[4],
in[3], in[2], in[1], in[0]);
#endif
}
/**
* Load two little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_le(const byte in[], T& x0, T& x1)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
}
/**
* Load four little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
T& x0, T& x1, T& x2, T& x3)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
x2 = load_le<T>(in, 2);
x3 = load_le<T>(in, 3);
}
/**
* Load eight little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
T& x0, T& x1, T& x2, T& x3,
T& x4, T& x5, T& x6, T& x7)
{
x0 = load_le<T>(in, 0);
x1 = load_le<T>(in, 1);
x2 = load_le<T>(in, 2);
x3 = load_le<T>(in, 3);
x4 = load_le<T>(in, 4);
x5 = load_le<T>(in, 5);
x6 = load_le<T>(in, 6);
x7 = load_le<T>(in, 7);
}
/**
* Load a variable number of little-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_le(T out[],
const byte in[],
size_t count)
{
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
std::memcpy(out, in, sizeof(T)*count);
#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
const size_t blocks = count - (count % 4);
const size_t left = count - blocks;
for(size_t i = 0; i != blocks; i += 4)
bswap_4(out + i);
for(size_t i = 0; i != left; ++i)
out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif
#else
for(size_t i = 0; i != count; ++i)
out[i] = load_le<T>(in, i);
#endif
}
/**
* Load two big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_be(const byte in[], T& x0, T& x1)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
}
/**
* Load four big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
T& x0, T& x1, T& x2, T& x3)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
x2 = load_be<T>(in, 2);
x3 = load_be<T>(in, 3);
}
/**
* Load eight big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
T& x0, T& x1, T& x2, T& x3,
T& x4, T& x5, T& x6, T& x7)
{
x0 = load_be<T>(in, 0);
x1 = load_be<T>(in, 1);
x2 = load_be<T>(in, 2);
x3 = load_be<T>(in, 3);
x4 = load_be<T>(in, 4);
x5 = load_be<T>(in, 5);
x6 = load_be<T>(in, 6);
x7 = load_be<T>(in, 7);
}
/**
* Load a variable number of big-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_be(T out[],
const byte in[],
size_t count)
{
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
std::memcpy(out, in, sizeof(T)*count);
#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
const size_t blocks = count - (count % 4);
const size_t left = count - blocks;
for(size_t i = 0; i != blocks; i += 4)
bswap_4(out + i);
for(size_t i = 0; i != left; ++i)
out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif
#else
for(size_t i = 0; i != count; ++i)
out[i] = load_be<T>(in, i);
#endif
}
/**
* Store a big-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_be(u16bit in, byte out[2])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
#endif
}
/**
* Store a little-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_le(u16bit in, byte out[2])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(1, in);
out[1] = get_byte(0, in);
#endif
}
/**
* Store a big-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_be(u32bit in, byte out[4])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
out[2] = get_byte(2, in);
out[3] = get_byte(3, in);
#endif
}
/**
* Store a little-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_le(u32bit in, byte out[4])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(3, in);
out[1] = get_byte(2, in);
out[2] = get_byte(1, in);
out[3] = get_byte(0, in);
#endif
}
/**
* Store a big-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_be(u64bit in, byte out[8])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
out[0] = get_byte(0, in);
out[1] = get_byte(1, in);
out[2] = get_byte(2, in);
out[3] = get_byte(3, in);
out[4] = get_byte(4, in);
out[5] = get_byte(5, in);
out[6] = get_byte(6, in);
out[7] = get_byte(7, in);
#endif
}
/**
* Store a little-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_le(u64bit in, byte out[8])
{
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
*reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
out[0] = get_byte(7, in);
out[1] = get_byte(6, in);
out[2] = get_byte(5, in);
out[3] = get_byte(4, in);
out[4] = get_byte(3, in);
out[5] = get_byte(2, in);
out[6] = get_byte(1, in);
out[7] = get_byte(0, in);
#endif
}
/**
* Store two little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
}
/**
* Store two big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
}
/**
* Store four little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
store_le(x2, out + (2 * sizeof(T)));
store_le(x3, out + (3 * sizeof(T)));
}
/**
* Store four big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
store_be(x2, out + (2 * sizeof(T)));
store_be(x3, out + (3 * sizeof(T)));
}
/**
* Store eight little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3,
T x4, T x5, T x6, T x7)
{
store_le(x0, out + (0 * sizeof(T)));
store_le(x1, out + (1 * sizeof(T)));
store_le(x2, out + (2 * sizeof(T)));
store_le(x3, out + (3 * sizeof(T)));
store_le(x4, out + (4 * sizeof(T)));
store_le(x5, out + (5 * sizeof(T)));
store_le(x6, out + (6 * sizeof(T)));
store_le(x7, out + (7 * sizeof(T)));
}
/**
* Store eight big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3,
T x4, T x5, T x6, T x7)
{
store_be(x0, out + (0 * sizeof(T)));
store_be(x1, out + (1 * sizeof(T)));
store_be(x2, out + (2 * sizeof(T)));
store_be(x3, out + (3 * sizeof(T)));
store_be(x4, out + (4 * sizeof(T)));
store_be(x5, out + (5 * sizeof(T)));
store_be(x6, out + (6 * sizeof(T)));
store_be(x7, out + (7 * sizeof(T)));
}
template<typename T>
void copy_out_be(byte out[], size_t out_bytes, const T in[])
{
while(out_bytes >= sizeof(T))
{
store_be(in[0], out);
out += sizeof(T);
out_bytes -= sizeof(T);
in += 1;
}
for(size_t i = 0; i != out_bytes; ++i)
out[i] = get_byte(i%8, in[0]);
}
template<typename T, typename Alloc>
void copy_out_vec_be(byte out[], size_t out_bytes, const std::vector<T, Alloc>& in)
{
copy_out_be(out, out_bytes, &in[0]);
}
template<typename T>
void copy_out_le(byte out[], size_t out_bytes, const T in[])
{
while(out_bytes >= sizeof(T))
{
store_le(in[0], out);
out += sizeof(T);
out_bytes -= sizeof(T);
in += 1;
}
for(size_t i = 0; i != out_bytes; ++i)
out[i] = get_byte(sizeof(T) - 1 - (i % 8), in[0]);
}
template<typename T, typename Alloc>
void copy_out_vec_le(byte out[], size_t out_bytes, const std::vector<T, Alloc>& in)
{
copy_out_le(out, out_bytes, &in[0]);
}
}
#endif
|