1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/*
* Functions for constant time operations on data and testing of
* constant time annotations using valgrind.
*
* For more information about constant time programming see
* Wagner, Molnar, et al "The Program Counter Security Model"
*
* (C) 2010 Falko Strenzke
* (C) 2015,2016,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_CT_UTILS_H_
#define BOTAN_CT_UTILS_H_
#include <botan/secmem.h>
#include <botan/internal/bit_ops.h>
#include <type_traits>
#include <vector>
#if defined(BOTAN_HAS_VALGRIND)
#include <valgrind/memcheck.h>
#endif
namespace Botan {
namespace CT {
/**
* Use valgrind to mark the contents of memory as being undefined.
* Valgrind will accept operations which manipulate undefined values,
* but will warn if an undefined value is used to decided a conditional
* jump or a load/store address. So if we poison all of our inputs we
* can confirm that the operations in question are truly const time
* when compiled by whatever compiler is in use.
*
* Even better, the VALGRIND_MAKE_MEM_* macros work even when the
* program is not run under valgrind (though with a few cycles of
* overhead, which is unfortunate in final binaries as these
* annotations tend to be used in fairly important loops).
*
* This approach was first used in ctgrind (https://github.com/agl/ctgrind)
* but calling the valgrind mecheck API directly works just as well and
* doesn't require a custom patched valgrind.
*/
template<typename T>
inline void poison(const T* p, size_t n)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_UNDEFINED(p, n * sizeof(T));
#else
BOTAN_UNUSED(p);
BOTAN_UNUSED(n);
#endif
}
template<typename T>
inline void unpoison(const T* p, size_t n)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_DEFINED(p, n * sizeof(T));
#else
BOTAN_UNUSED(p);
BOTAN_UNUSED(n);
#endif
}
template<typename T>
inline void unpoison(T& p)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_DEFINED(&p, sizeof(T));
#else
BOTAN_UNUSED(p);
#endif
}
/**
* A Mask type used for constant-time operations. A Mask<T> always has value
* either 0 (all bits cleared) or ~0 (all bits set). All operations in a Mask<T>
* are intended to compile to code which does not contain conditional jumps.
* This must be verified with tooling (eg binary disassembly or using valgrind)
* since you never know what a compiler might do.
*/
template<typename T>
class Mask
{
public:
static_assert(std::is_unsigned<T>::value, "CT::Mask only defined for unsigned integer types");
Mask(const Mask<T>& other) = default;
Mask<T>& operator=(const Mask<T>& other) = default;
/**
* Derive a Mask from a Mask of a larger type
*/
template<typename U>
Mask(Mask<U> o) : m_mask(static_cast<T>(o.value()))
{
static_assert(sizeof(U) > sizeof(T), "sizes ok");
}
/**
* Return a Mask<T> with all bits set
*/
static Mask<T> set()
{
return Mask<T>(static_cast<T>(~0));
}
/**
* Return a Mask<T> with all bits cleared
*/
static Mask<T> cleared()
{
return Mask<T>(0);
}
/**
* Return a Mask<T> which is set if v is != 0
*/
static Mask<T> expand(T v)
{
return ~Mask<T>::is_zero(v);
}
/**
* Return a Mask<T> which is set if m is set
*/
template<typename U>
static Mask<T> expand(Mask<U> m)
{
static_assert(sizeof(U) < sizeof(T), "sizes ok");
return ~Mask<T>::is_zero(m.value());
}
/**
* Return a Mask<T> which is set if v is == 0 or cleared otherwise
*/
static Mask<T> is_zero(T x)
{
return Mask<T>(ct_is_zero<T>(x));
}
/**
* Return a Mask<T> which is set if x == y
*/
static Mask<T> is_equal(T x, T y)
{
return Mask<T>::is_zero(static_cast<T>(x ^ y));
}
/**
* Return a Mask<T> which is set if x < y
*/
static Mask<T> is_lt(T x, T y)
{
return Mask<T>(expand_top_bit<T>(x^((x^y) | ((x-y)^x))));
}
/**
* Return a Mask<T> which is set if x > y
*/
static Mask<T> is_gt(T x, T y)
{
return Mask<T>::is_lt(y, x);
}
/**
* Return a Mask<T> which is set if x <= y
*/
static Mask<T> is_lte(T x, T y)
{
return ~Mask<T>::is_gt(x, y);
}
/**
* Return a Mask<T> which is set if x >= y
*/
static Mask<T> is_gte(T x, T y)
{
return ~Mask<T>::is_lt(x, y);
}
/**
* AND-combine two masks
*/
Mask<T>& operator&=(Mask<T> o)
{
m_mask &= o.value();
return (*this);
}
/**
* XOR-combine two masks
*/
Mask<T>& operator^=(Mask<T> o)
{
m_mask ^= o.value();
return (*this);
}
/**
* OR-combine two masks
*/
Mask<T>& operator|=(Mask<T> o)
{
m_mask |= o.value();
return (*this);
}
/**
* AND-combine two masks
*/
friend Mask<T> operator&(Mask<T> x, Mask<T> y)
{
return Mask<T>(x.value() & y.value());
}
/**
* XOR-combine two masks
*/
friend Mask<T> operator^(Mask<T> x, Mask<T> y)
{
return Mask<T>(x.value() ^ y.value());
}
/**
* OR-combine two masks
*/
friend Mask<T> operator|(Mask<T> x, Mask<T> y)
{
return Mask<T>(x.value() | y.value());
}
/**
* Negate this mask
*/
Mask<T> operator~() const
{
return Mask<T>(~value());
}
/**
* Return x if the mask is set, or otherwise zero
*/
T if_set_return(T x) const
{
return m_mask & x;
}
/**
* Return x if the mask is cleared, or otherwise zero
*/
T if_not_set_return(T x) const
{
return ~m_mask & x;
}
/**
* If this mask is set, return x, otherwise return y
*/
T select(T x, T y) const
{
// (x & value()) | (y & ~value())
return static_cast<T>(y ^ (value() & (x ^ y)));
}
T select_and_unpoison(T x, T y) const
{
T r = this->select(x, y);
CT::unpoison(r);
return r;
}
/**
* If this mask is set, return x, otherwise return y
*/
Mask<T> select_mask(Mask<T> x, Mask<T> y) const
{
return Mask<T>(select(x.value(), y.value()));
}
/**
* Conditionally set output to x or y, depending on if mask is set or
* cleared (resp)
*/
void select_n(T output[], const T x[], const T y[], size_t len) const
{
for(size_t i = 0; i != len; ++i)
output[i] = this->select(x[i], y[i]);
}
/**
* If this mask is set, zero out buf, otherwise do nothing
*/
void if_set_zero_out(T buf[], size_t elems)
{
for(size_t i = 0; i != elems; ++i)
{
buf[i] = this->if_not_set_return(buf[i]);
}
}
/**
* Return the value of the mask, unpoisoned
*/
T unpoisoned_value() const
{
T r = value();
CT::unpoison(r);
return r;
}
/**
* Return true iff this mask is set
*/
bool is_set() const
{
return unpoisoned_value() != 0;
}
/**
* Return the underlying value of the mask
*/
T value() const
{
return m_mask;
}
private:
Mask(T m) : m_mask(m) {}
T m_mask;
};
template<typename T>
inline Mask<T> conditional_copy_mem(T cnd,
T* to,
const T* from0,
const T* from1,
size_t elems)
{
const auto mask = CT::Mask<T>::expand(cnd);
mask.select_n(to, from0, from1, elems);
return mask;
}
template<typename T>
inline void conditional_swap(bool cnd, T& x, T& y)
{
const auto swap = CT::Mask<T>::expand(cnd);
T t0 = swap.select(y, x);
T t1 = swap.select(x, y);
x = t0;
y = t1;
}
template<typename T>
inline void conditional_swap_ptr(bool cnd, T& x, T& y)
{
uintptr_t xp = reinterpret_cast<uintptr_t>(x);
uintptr_t yp = reinterpret_cast<uintptr_t>(y);
conditional_swap<uintptr_t>(cnd, xp, yp);
x = reinterpret_cast<T>(xp);
y = reinterpret_cast<T>(yp);
}
/**
* If bad_mask is unset, return in[delim_idx:input_length] copied to
* new buffer. If bad_mask is set, return an all zero vector of
* unspecified length.
*/
secure_vector<uint8_t> copy_output(CT::Mask<uint8_t> bad_input,
const uint8_t input[],
size_t input_length,
size_t delim_idx);
secure_vector<uint8_t> strip_leading_zeros(const uint8_t in[], size_t length);
inline secure_vector<uint8_t> strip_leading_zeros(const secure_vector<uint8_t>& in)
{
return strip_leading_zeros(in.data(), in.size());
}
}
}
#endif
|