1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* Functions for constant time operations on data and testing of
* constant time annotations using valgrind.
*
* For more information about constant time programming see
* Wagner, Molnar, et al "The Program Counter Security Model"
*
* (C) 2010 Falko Strenzke
* (C) 2015,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_TIMING_ATTACK_CM_H__
#define BOTAN_TIMING_ATTACK_CM_H__
#include <botan/secmem.h>
#include <vector>
#if defined(BOTAN_HAS_VALGRIND)
#include <valgrind/memcheck.h>
#endif
namespace Botan {
namespace CT {
/**
* Use valgrind to mark the contents of memory as being undefined.
* Valgrind will accept operations which manipulate undefined values,
* but will warn if an undefined value is used to decided a conditional
* jump or a load/store address. So if we poison all of our inputs we
* can confirm that the operations in question are truly const time
* when compiled by whatever compiler is in use.
*
* Even better, the VALGRIND_MAKE_MEM_* macros work even when the
* program is not run under valgrind (though with a few cycles of
* overhead, which is unfortunate in final binaries as these
* annotations tend to be used in fairly important loops).
*
* This approach was first used in ctgrind (https://github.com/agl/ctgrind)
* but calling the valgrind mecheck API directly works just as well and
* doesn't require a custom patched valgrind.
*/
template<typename T>
inline void poison(const T* p, size_t n)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_UNDEFINED(p, n * sizeof(T));
#else
BOTAN_UNUSED(p);
BOTAN_UNUSED(n);
#endif
}
template<typename T>
inline void unpoison(const T* p, size_t n)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_DEFINED(p, n * sizeof(T));
#else
BOTAN_UNUSED(p);
BOTAN_UNUSED(n);
#endif
}
template<typename T>
inline void unpoison(T& p)
{
#if defined(BOTAN_HAS_VALGRIND)
VALGRIND_MAKE_MEM_DEFINED(&p, sizeof(T));
#else
BOTAN_UNUSED(p);
#endif
}
/*
* T should be an unsigned machine integer type
* Expand to a mask used for other operations
* @param in an integer
* @return If n is zero, returns zero. Otherwise
* returns a T with all bits set for use as a mask with
* select.
*/
template<typename T>
inline T expand_mask(T x)
{
T r = x;
// First fold r down to a single bit
for(size_t i = 1; i != sizeof(T)*8; i *= 2)
r |= r >> i;
r &= 1;
r = ~(r - 1);
return r;
}
template<typename T>
inline T select(T mask, T from0, T from1)
{
return (from0 & mask) | (from1 & ~mask);
}
template<typename PredT, typename ValT>
inline ValT val_or_zero(PredT pred_val, ValT val)
{
return select(CT::expand_mask<ValT>(pred_val), val, static_cast<ValT>(0));
}
template<typename T>
inline T is_zero(T x)
{
return ~expand_mask(x);
}
template<typename T>
inline T is_equal(T x, T y)
{
return is_zero(x ^ y);
}
template<typename T>
inline T is_less(T x, T y)
{
/*
This expands to a constant time sequence with GCC 5.2.0 on x86-64
but something more complicated may be needed for portable const time.
*/
return expand_mask<T>(x < y);
}
template<typename T>
inline void conditional_copy_mem(T value,
T* to,
const T* from0,
const T* from1,
size_t elems)
{
const T mask = CT::expand_mask(value);
for(size_t i = 0; i != elems; ++i)
{
to[i] = CT::select(mask, from0[i], from1[i]);
}
}
template<typename T>
inline void cond_zero_mem(T cond,
T* array,
size_t elems)
{
const T mask = CT::expand_mask(cond);
const T zero(0);
for(size_t i = 0; i != elems; ++i)
{
array[i] = CT::select(mask, zero, array[i]);
}
}
template<typename T>
inline T expand_top_bit(T a)
{
return expand_mask<T>(a >> (sizeof(T)*8-1));
}
template<typename T>
inline T max(T a, T b)
{
const T a_larger = b - a; // negative if a is larger
return select(expand_top_bit(a), a, b);
}
template<typename T>
inline T min(T a, T b)
{
const T a_larger = b - a; // negative if a is larger
return select(expand_top_bit(b), b, a);
}
template<typename T, typename Alloc>
std::vector<T, Alloc> strip_leading_zeros(const std::vector<T, Alloc>& input)
{
size_t leading_zeros = 0;
uint8_t only_zeros = 0xFF;
for(size_t i = 0; i != input.size(); ++i)
{
only_zeros &= CT::is_zero(input[i]);
leading_zeros += CT::select<uint8_t>(only_zeros, 1, 0);
}
return secure_vector<byte>(input.begin() + leading_zeros, input.end());
}
}
}
#endif
|