1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/*
* Runtime CPU detection
* (C) 2009,2010,2013,2017 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_CPUID_H_
#define BOTAN_CPUID_H_
#include <botan/types.h>
#include <vector>
#include <string>
#include <iosfwd>
namespace Botan {
/**
* A class handling runtime CPU feature detection. It is limited to
* just the features necessary to implement CPU specific code in Botan,
* rather than being a general purpose utility.
*
* This class supports:
*
* - x86 features using CPUID. x86 is also the only processor with
* accurate cache line detection currently.
*
* - PowerPC AltiVec detection on Linux, NetBSD, OpenBSD, and Darwin
*
* - ARM NEON and crypto extensions detection. On Linux and Android
* systems which support getauxval, that is used to access CPU
* feature information. Otherwise a relatively portable but
* thread-unsafe mechanism involving executing probe functions which
* catching SIGILL signal is used.
*/
class BOTAN_PUBLIC_API(2,1) CPUID final
{
public:
/**
* Probe the CPU and see what extensions are supported
*/
static void initialize();
static bool has_simd_32();
/**
* Deprecated equivalent to
* o << "CPUID flags: " << CPUID::to_string() << "\n";
*/
BOTAN_DEPRECATED("Use CPUID::to_string")
static void print(std::ostream& o);
/**
* Return a possibly empty string containing list of known CPU
* extensions. Each name will be seperated by a space, and the ordering
* will be arbitrary. This list only contains values that are useful to
* Botan (for example FMA instructions are not checked).
*
* Example outputs "sse2 ssse3 rdtsc", "neon arm_aes", "altivec"
*/
static std::string to_string();
/**
* Return a best guess of the cache line size
*/
static size_t cache_line_size()
{
if(g_processor_features == 0)
{
initialize();
}
return g_cache_line_size;
}
static bool is_little_endian()
{
return endian_status() == ENDIAN_LITTLE;
}
static bool is_big_endian()
{
return endian_status() == ENDIAN_BIG;
}
enum CPUID_bits : uint64_t {
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
// These values have no relation to cpuid bitfields
// SIMD instruction sets
CPUID_SSE2_BIT = (1ULL << 0),
CPUID_SSSE3_BIT = (1ULL << 1),
CPUID_SSE41_BIT = (1ULL << 2),
CPUID_SSE42_BIT = (1ULL << 3),
CPUID_AVX2_BIT = (1ULL << 4),
CPUID_AVX512F_BIT = (1ULL << 5),
// Misc useful instructions
CPUID_RDTSC_BIT = (1ULL << 10),
CPUID_BMI2_BIT = (1ULL << 11),
CPUID_ADX_BIT = (1ULL << 12),
// Crypto-specific ISAs
CPUID_AESNI_BIT = (1ULL << 16),
CPUID_CLMUL_BIT = (1ULL << 17),
CPUID_RDRAND_BIT = (1ULL << 18),
CPUID_RDSEED_BIT = (1ULL << 19),
CPUID_SHA_BIT = (1ULL << 20),
#endif
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
CPUID_ALTIVEC_BIT = (1ULL << 0),
CPUID_PPC_CRYPTO_BIT = (1ULL << 1),
#endif
#if defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)
CPUID_ARM_NEON_BIT = (1ULL << 0),
CPUID_ARM_AES_BIT = (1ULL << 16),
CPUID_ARM_PMULL_BIT = (1ULL << 17),
CPUID_ARM_SHA1_BIT = (1ULL << 18),
CPUID_ARM_SHA2_BIT = (1ULL << 19),
#endif
CPUID_INITIALIZED_BIT = (1ULL << 63)
};
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
/**
* Check if the processor supports AltiVec/VMX
*/
static bool has_altivec()
{ return has_cpuid_bit(CPUID_ALTIVEC_BIT); }
/**
* Check if the processor supports POWER8 crypto extensions
*/
static bool has_ppc_crypto()
{ return has_cpuid_bit(CPUID_PPC_CRYPTO_BIT); }
#endif
#if defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)
/**
* Check if the processor supports NEON SIMD
*/
static bool has_neon()
{ return has_cpuid_bit(CPUID_ARM_NEON_BIT); }
/**
* Check if the processor supports ARMv8 SHA1
*/
static bool has_arm_sha1()
{ return has_cpuid_bit(CPUID_ARM_SHA1_BIT); }
/**
* Check if the processor supports ARMv8 SHA2
*/
static bool has_arm_sha2()
{ return has_cpuid_bit(CPUID_ARM_SHA2_BIT); }
/**
* Check if the processor supports ARMv8 AES
*/
static bool has_arm_aes()
{ return has_cpuid_bit(CPUID_ARM_AES_BIT); }
/**
* Check if the processor supports ARMv8 PMULL
*/
static bool has_arm_pmull()
{ return has_cpuid_bit(CPUID_ARM_PMULL_BIT); }
#endif
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
/**
* Check if the processor supports RDTSC
*/
static bool has_rdtsc()
{ return has_cpuid_bit(CPUID_RDTSC_BIT); }
/**
* Check if the processor supports SSE2
*/
static bool has_sse2()
{ return has_cpuid_bit(CPUID_SSE2_BIT); }
/**
* Check if the processor supports SSSE3
*/
static bool has_ssse3()
{ return has_cpuid_bit(CPUID_SSSE3_BIT); }
/**
* Check if the processor supports SSE4.1
*/
static bool has_sse41()
{ return has_cpuid_bit(CPUID_SSE41_BIT); }
/**
* Check if the processor supports SSE4.2
*/
static bool has_sse42()
{ return has_cpuid_bit(CPUID_SSE42_BIT); }
/**
* Check if the processor supports AVX2
*/
static bool has_avx2()
{ return has_cpuid_bit(CPUID_AVX2_BIT); }
/**
* Check if the processor supports AVX-512F
*/
static bool has_avx512f()
{ return has_cpuid_bit(CPUID_AVX512F_BIT); }
/**
* Check if the processor supports BMI2
*/
static bool has_bmi2()
{ return has_cpuid_bit(CPUID_BMI2_BIT); }
/**
* Check if the processor supports AES-NI
*/
static bool has_aes_ni()
{ return has_cpuid_bit(CPUID_AESNI_BIT); }
/**
* Check if the processor supports CLMUL
*/
static bool has_clmul()
{ return has_cpuid_bit(CPUID_CLMUL_BIT); }
/**
* Check if the processor supports Intel SHA extension
*/
static bool has_intel_sha()
{ return has_cpuid_bit(CPUID_SHA_BIT); }
/**
* Check if the processor supports ADX extension
*/
static bool has_adx()
{ return has_cpuid_bit(CPUID_ADX_BIT); }
/**
* Check if the processor supports RDRAND
*/
static bool has_rdrand()
{ return has_cpuid_bit(CPUID_RDRAND_BIT); }
/**
* Check if the processor supports RDSEED
*/
static bool has_rdseed()
{ return has_cpuid_bit(CPUID_RDSEED_BIT); }
#endif
/*
* Clear a CPUID bit
* Call CPUID::initialize to reset
*
* This is only exposed for testing, don't use unless you know
* what you are doing.
*/
static void clear_cpuid_bit(CPUID_bits bit)
{
const uint64_t mask = ~(static_cast<uint64_t>(bit));
g_processor_features &= mask;
}
/*
* Don't call this function, use CPUID::has_xxx above
* It is only exposed for the tests.
*/
static bool has_cpuid_bit(CPUID_bits elem)
{
if(g_processor_features == 0)
initialize();
const uint64_t elem64 = static_cast<uint64_t>(elem);
return ((g_processor_features & elem64) == elem64);
}
static std::vector<CPUID::CPUID_bits> bit_from_string(const std::string& tok);
private:
enum Endian_status : uint32_t {
ENDIAN_UNKNOWN = 0x00000000,
ENDIAN_BIG = 0x01234567,
ENDIAN_LITTLE = 0x67452301,
};
#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY) || \
defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY) || \
defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
static uint64_t detect_cpu_features(size_t* cache_line_size);
#endif
static Endian_status runtime_check_endian();
static Endian_status endian_status()
{
if(g_endian_status == ENDIAN_UNKNOWN)
{
g_endian_status = runtime_check_endian();
}
return g_endian_status;
}
static uint64_t g_processor_features;
static size_t g_cache_line_size;
static Endian_status g_endian_status;
};
}
#endif
|