aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/utils/cpuid.h
blob: 634305aa199be0c408e192c5ec0896a5d7af45f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
* Runtime CPU detection
* (C) 2009-2010,2013 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_CPUID_H__
#define BOTAN_CPUID_H__

#include <botan/types.h>
#include <iosfwd>

namespace Botan {

/**
* A class handling runtime CPU feature detection
*
* Currently this class supports only x86 (via CPUID) and PowerPC (AltiVec detection)
*/
class BOTAN_DLL CPUID
   {
   public:
      /**
      * Probe the CPU and see what extensions are supported
      */
      static void initialize();

      static bool has_simd_32();

      static void print(std::ostream& o);

      /**
      * Return a best guess of the cache line size
      */
      static size_t cache_line_size()
         {
         if(!g_initialized)
            {
            initialize();
            }
         return g_cache_line_size;
         }

      static bool is_little_endian()
         {
         if(!g_initialized)
            {
            initialize();
            }
         return g_little_endian;
         }

      enum CPUID_bits {
#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)
         // This matches the layout of cpuid(1)
         CPUID_RDTSC_BIT = 4,
         CPUID_SSE2_BIT = 26,
         CPUID_CLMUL_BIT = 33,
         CPUID_SSSE3_BIT = 41,
         CPUID_SSE41_BIT = 51,
         CPUID_SSE42_BIT = 52,
         CPUID_AESNI_BIT = 57,
         CPUID_RDRAND_BIT = 62,

         CPUID_AVX2_BIT = 64+5,
         CPUID_BMI2_BIT = 64+8,
         CPUID_AVX512F_BIT = 64+16,
         CPUID_RDSEED_BIT = 64+18,
         CPUID_ADX_BIT = 64+19,
         CPUID_SHA_BIT = 64+29,
#endif

#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
         CPUID_ALTIVEC_BIT = 0
#endif

         // TODO: ARMv8 feature detection
      };

#if defined(BOTAN_TARGET_CPU_IS_PPC_FAMILY)
      /**
      * Check if the processor supports AltiVec/VMX
      */
      static bool has_altivec()
         { return has_cpuid_bit(CPUID_ALTIVEC_BIT); }
#endif

#if defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)

      /**
      * Check if the processor supports RDTSC
      */
      static bool has_rdtsc()
         { return has_cpuid_bit(CPUID_RDTSC_BIT); }

      /**
      * Check if the processor supports SSE2
      */
      static bool has_sse2()
         { return has_cpuid_bit(CPUID_SSE2_BIT); }

      /**
      * Check if the processor supports SSSE3
      */
      static bool has_ssse3()
         { return has_cpuid_bit(CPUID_SSSE3_BIT); }

      /**
      * Check if the processor supports SSE4.1
      */
      static bool has_sse41()
         { return has_cpuid_bit(CPUID_SSE41_BIT); }

      /**
      * Check if the processor supports SSE4.2
      */
      static bool has_sse42()
         { return has_cpuid_bit(CPUID_SSE42_BIT); }

      /**
      * Check if the processor supports AVX2
      */
      static bool has_avx2()
         { return has_cpuid_bit(CPUID_AVX2_BIT); }

      /**
      * Check if the processor supports AVX-512F
      */
      static bool has_avx512f()
         { return has_cpuid_bit(CPUID_AVX512F_BIT); }

      /**
      * Check if the processor supports BMI2
      */
      static bool has_bmi2()
         { return has_cpuid_bit(CPUID_BMI2_BIT); }

      /**
      * Check if the processor supports AES-NI
      */
      static bool has_aes_ni()
         { return has_cpuid_bit(CPUID_AESNI_BIT); }

      /**
      * Check if the processor supports CLMUL
      */
      static bool has_clmul()
         { return has_cpuid_bit(CPUID_CLMUL_BIT); }

      /**
      * Check if the processor supports Intel SHA extension
      */
      static bool has_intel_sha()
         { return has_cpuid_bit(CPUID_SHA_BIT); }

      /**
      * Check if the processor supports ADX extension
      */
      static bool has_adx()
         { return has_cpuid_bit(CPUID_ADX_BIT); }

      /**
      * Check if the processor supports RDRAND
      */
      static bool has_rdrand()
         { return has_cpuid_bit(CPUID_RDRAND_BIT); }

      /**
      * Check if the processor supports RDSEED
      */
      static bool has_rdseed()
         { return has_cpuid_bit(CPUID_RDSEED_BIT); }
#endif

      /*
      * Clear a CPUID bit
      * Call CPUID::initialize to reset
      */
      static void clear_cpuid_bit(CPUID_bits bit)
         {
         const uint64_t mask = ~(static_cast<uint64_t>(1) << (bit % 64));
         g_processor_flags[bit/64] &= mask;
         }

      static bool has_cpuid_bit(CPUID_bits elem)
         {
         if(!g_initialized)
            initialize();
         const size_t bit = static_cast<size_t>(elem);
         return ((g_processor_flags[bit/64] >> (bit % 64)) & 1);
         }

   private:
      static bool g_initialized;
      static bool g_little_endian;
      static size_t g_cache_line_size;
      static uint64_t g_processor_flags[2];
   };

}

#endif