1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/*
* Policies for TLS
* (C) 2004-2010,2012,2015,2016 Jack Lloyd
* 2016 Christian Mainka
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/tls_policy.h>
#include <botan/tls_ciphersuite.h>
#include <botan/tls_magic.h>
#include <botan/tls_exceptn.h>
#include <botan/internal/stl_util.h>
namespace Botan {
namespace TLS {
std::vector<std::string> Policy::allowed_ciphers() const
{
return {
//"AES-256/OCB(12)",
//"AES-128/OCB(12)",
"ChaCha20Poly1305",
"AES-256/GCM",
"AES-128/GCM",
"AES-256/CCM",
"AES-128/CCM",
//"AES-256/CCM(8)",
//"AES-128/CCM(8)",
//"Camellia-256/GCM",
//"Camellia-128/GCM",
"AES-256",
"AES-128",
//"Camellia-256",
//"Camellia-128",
//"SEED"
//"3DES",
};
}
std::vector<std::string> Policy::allowed_signature_hashes() const
{
return {
"SHA-512",
"SHA-384",
"SHA-256",
//"SHA-1",
};
}
std::vector<std::string> Policy::allowed_macs() const
{
/*
SHA-256 is preferred because the Lucky13 countermeasure works
somewhat better for SHA-256 vs SHA-384:
https://github.com/randombit/botan/pull/675
*/
return {
"AEAD",
"SHA-256",
"SHA-384",
"SHA-1",
};
}
std::vector<std::string> Policy::allowed_key_exchange_methods() const
{
return {
//"SRP_SHA",
//"ECDHE_PSK",
//"DHE_PSK",
//"PSK",
"CECPQ1",
"ECDH",
"DH",
//"RSA",
};
}
std::vector<std::string> Policy::allowed_signature_methods() const
{
return {
"ECDSA",
"RSA",
//"DSA",
//"" (anon)
};
}
bool Policy::allowed_signature_method(const std::string& sig_method) const
{
return value_exists(allowed_signature_methods(), sig_method);
}
std::vector<std::string> Policy::allowed_ecc_curves() const
{
// Default list is ordered by performance
return {
"x25519",
"secp256r1",
"secp521r1",
"secp384r1",
"brainpool256r1",
"brainpool384r1",
"brainpool512r1",
};
}
bool Policy::allowed_ecc_curve(const std::string& curve) const
{
return value_exists(allowed_ecc_curves(), curve);
}
bool Policy::use_ecc_point_compression() const
{
return false;
}
/*
* Choose an ECC curve to use
*/
std::string Policy::choose_curve(const std::vector<std::string>& curve_names) const
{
const std::vector<std::string> our_curves = allowed_ecc_curves();
for(size_t i = 0; i != our_curves.size(); ++i)
if(value_exists(curve_names, our_curves[i]))
return our_curves[i];
return ""; // no shared curve
}
std::string Policy::dh_group() const
{
// We offer 2048 bit DH because we can
return "modp/ietf/2048";
}
size_t Policy::minimum_dh_group_size() const
{
// Many servers still send 1024 bit
return 1024;
}
size_t Policy::minimum_ecdsa_group_size() const
{
// Here we are at the mercy of whatever the CA signed, but most certs should be 256 bit by now
return 256;
}
size_t Policy::minimum_ecdh_group_size() const
{
// x25519 is smallest curve currently supported for TLS key exchange
return 255;
}
size_t Policy::minimum_signature_strength() const
{
return 110;
}
bool Policy::require_cert_revocation_info() const
{
return true;
}
size_t Policy::minimum_rsa_bits() const
{
/* Default assumption is all end-entity certificates should
be at least 2048 bits these days.
If you are connecting to arbitrary servers on the Internet
(ie as a web browser or SMTP client) you'll probably have to reduce this
to 1024 bits, or perhaps even lower.
*/
return 2048;
}
size_t Policy::minimum_dsa_group_size() const
{
// FIPS 186-3
return 2048;
}
void Policy::check_peer_key_acceptable(const Public_Key& public_key) const
{
const std::string algo_name = public_key.algo_name();
const size_t keylength = public_key.key_length();
size_t expected_keylength = 0;
if(algo_name == "RSA")
{
expected_keylength = minimum_rsa_bits();
}
else if(algo_name == "DH")
{
expected_keylength = minimum_dh_group_size();
}
else if(algo_name == "DSA")
{
expected_keylength = minimum_dsa_group_size();
}
else if(algo_name == "ECDH" || algo_name == "Curve25519")
{
expected_keylength = minimum_ecdh_group_size();
}
else if(algo_name == "ECDSA")
{
expected_keylength = minimum_ecdsa_group_size();
}
// else some other algo, so leave expected_keylength as zero and the check is a no-op
if(keylength < expected_keylength)
throw TLS_Exception(Alert::INSUFFICIENT_SECURITY,
"Peer sent " +
std::to_string(keylength) + " bit " + algo_name + " key"
", policy requires at least " +
std::to_string(expected_keylength));
}
/*
* Return allowed compression algorithms
*/
std::vector<uint8_t> Policy::compression() const
{
return std::vector<uint8_t>{ NO_COMPRESSION };
}
uint32_t Policy::session_ticket_lifetime() const
{
return 86400; // ~1 day
}
bool Policy::send_fallback_scsv(Protocol_Version version) const
{
return version != latest_supported_version(version.is_datagram_protocol());
}
bool Policy::acceptable_protocol_version(Protocol_Version version) const
{
// Uses boolean optimization:
// First check the current version (left part), then if it is allowed
// (right part)
// checks are ordered according to their probability
return (
( ( version == Protocol_Version::TLS_V12) && allow_tls12() ) ||
( ( version == Protocol_Version::TLS_V10) && allow_tls10() ) ||
( ( version == Protocol_Version::TLS_V11) && allow_tls11() ) ||
( ( version == Protocol_Version::DTLS_V12) && allow_dtls12() ) ||
( ( version == Protocol_Version::DTLS_V10) && allow_dtls10() )
);
}
Protocol_Version Policy::latest_supported_version(bool datagram) const
{
if(datagram)
return Protocol_Version::latest_dtls_version();
else
return Protocol_Version::latest_tls_version();
}
bool Policy::acceptable_ciphersuite(const Ciphersuite&) const
{
return true;
}
bool Policy::allow_server_initiated_renegotiation() const { return false; }
bool Policy::allow_insecure_renegotiation() const { return false; }
bool Policy::allow_tls10() const { return true; }
bool Policy::allow_tls11() const { return true; }
bool Policy::allow_tls12() const { return true; }
bool Policy::allow_dtls10() const { return false; }
bool Policy::allow_dtls12() const { return true; }
bool Policy::include_time_in_hello_random() const { return true; }
bool Policy::hide_unknown_users() const { return false; }
bool Policy::server_uses_own_ciphersuite_preferences() const { return true; }
bool Policy::negotiate_encrypt_then_mac() const { return true; }
// 1 second initial timeout, 60 second max - see RFC 6347 sec 4.2.4.1
size_t Policy::dtls_initial_timeout() const { return 1*1000; }
size_t Policy::dtls_maximum_timeout() const { return 60*1000; }
size_t Policy::dtls_default_mtu() const
{
// default MTU is IPv6 min MTU minus UDP/IP headers
return 1280 - 40 - 8;
}
std::vector<uint16_t> Policy::srtp_profiles() const
{
return std::vector<uint16_t>();
}
namespace {
class Ciphersuite_Preference_Ordering
{
public:
Ciphersuite_Preference_Ordering(const std::vector<std::string>& ciphers,
const std::vector<std::string>& macs,
const std::vector<std::string>& kex,
const std::vector<std::string>& sigs) :
m_ciphers(ciphers), m_macs(macs), m_kex(kex), m_sigs(sigs) {}
bool operator()(const Ciphersuite& a, const Ciphersuite& b) const
{
if(a.kex_algo() != b.kex_algo())
{
for(size_t i = 0; i != m_kex.size(); ++i)
{
if(a.kex_algo() == m_kex[i])
return true;
if(b.kex_algo() == m_kex[i])
return false;
}
}
if(a.cipher_algo() != b.cipher_algo())
{
for(size_t i = 0; i != m_ciphers.size(); ++i)
{
if(a.cipher_algo() == m_ciphers[i])
return true;
if(b.cipher_algo() == m_ciphers[i])
return false;
}
}
if(a.cipher_keylen() != b.cipher_keylen())
{
if(a.cipher_keylen() < b.cipher_keylen())
return false;
if(a.cipher_keylen() > b.cipher_keylen())
return true;
}
if(a.sig_algo() != b.sig_algo())
{
for(size_t i = 0; i != m_sigs.size(); ++i)
{
if(a.sig_algo() == m_sigs[i])
return true;
if(b.sig_algo() == m_sigs[i])
return false;
}
}
if(a.mac_algo() != b.mac_algo())
{
for(size_t i = 0; i != m_macs.size(); ++i)
{
if(a.mac_algo() == m_macs[i])
return true;
if(b.mac_algo() == m_macs[i])
return false;
}
}
return false; // equal (?!?)
}
private:
std::vector<std::string> m_ciphers, m_macs, m_kex, m_sigs;
};
}
std::vector<uint16_t> Policy::ciphersuite_list(Protocol_Version version,
bool have_srp) const
{
const std::vector<std::string> ciphers = allowed_ciphers();
const std::vector<std::string> macs = allowed_macs();
const std::vector<std::string> kex = allowed_key_exchange_methods();
const std::vector<std::string> sigs = allowed_signature_methods();
std::vector<Ciphersuite> ciphersuites;
for(auto&& suite : Ciphersuite::all_known_ciphersuites())
{
// Can we use it?
if(suite.valid() == false)
continue;
// Is it acceptable to the policy?
if(!this->acceptable_ciphersuite(suite))
continue;
// Are we doing SRP?
if(!have_srp && suite.kex_algo() == "SRP_SHA")
continue;
// Are we doing AEAD in a non-AEAD version
if(!version.supports_aead_modes() && suite.mac_algo() == "AEAD")
continue;
if(!value_exists(kex, suite.kex_algo()))
continue; // unsupported key exchange
if(!value_exists(ciphers, suite.cipher_algo()))
continue; // unsupported cipher
if(!value_exists(macs, suite.mac_algo()))
continue; // unsupported MAC algo
if(!value_exists(sigs, suite.sig_algo()))
{
// allow if it's an empty sig algo and we want to use PSK
if(suite.sig_algo() != "" || !suite.psk_ciphersuite())
continue;
}
// OK, consider it
ciphersuites.push_back(suite);
}
if(ciphersuites.empty())
throw Exception("Policy does not allow any available cipher suite");
Ciphersuite_Preference_Ordering order(ciphers, macs, kex, sigs);
std::sort(ciphersuites.begin(), ciphersuites.end(), order);
std::vector<uint16_t> ciphersuite_codes;
for(auto i : ciphersuites)
ciphersuite_codes.push_back(i.ciphersuite_code());
return ciphersuite_codes;
}
namespace {
void print_vec(std::ostream& o,
const char* key,
const std::vector<std::string>& v)
{
o << key << " = ";
for(size_t i = 0; i != v.size(); ++i)
{
o << v[i];
if(i != v.size() - 1)
o << ' ';
}
o << '\n';
}
void print_bool(std::ostream& o,
const char* key, bool b)
{
o << key << " = " << (b ? "true" : "false") << '\n';
}
}
void Policy::print(std::ostream& o) const
{
print_bool(o, "allow_tls10", allow_tls10());
print_bool(o, "allow_tls11", allow_tls11());
print_bool(o, "allow_tls12", allow_tls12());
print_bool(o, "allow_dtls10", allow_dtls10());
print_bool(o, "allow_dtls12", allow_dtls12());
print_vec(o, "ciphers", allowed_ciphers());
print_vec(o, "macs", allowed_macs());
print_vec(o, "signature_hashes", allowed_signature_hashes());
print_vec(o, "signature_methods", allowed_signature_methods());
print_vec(o, "key_exchange_methods", allowed_key_exchange_methods());
print_vec(o, "ecc_curves", allowed_ecc_curves());
print_bool(o, "allow_insecure_renegotiation", allow_insecure_renegotiation());
print_bool(o, "include_time_in_hello_random", include_time_in_hello_random());
print_bool(o, "allow_server_initiated_renegotiation", allow_server_initiated_renegotiation());
print_bool(o, "hide_unknown_users", hide_unknown_users());
print_bool(o, "server_uses_own_ciphersuite_preferences", server_uses_own_ciphersuite_preferences());
print_bool(o, "negotiate_encrypt_then_mac", negotiate_encrypt_then_mac());
o << "session_ticket_lifetime = " << session_ticket_lifetime() << '\n';
o << "dh_group = " << dh_group() << '\n';
o << "minimum_dh_group_size = " << minimum_dh_group_size() << '\n';
o << "minimum_ecdh_group_size = " << minimum_ecdh_group_size() << '\n';
o << "minimum_rsa_bits = " << minimum_rsa_bits() << '\n';
o << "minimum_signature_strength = " << minimum_signature_strength() << '\n';
}
std::string Policy::to_string() const
{
std::ostringstream oss;
this->print(oss);
return oss.str();
}
std::vector<std::string> Strict_Policy::allowed_ciphers() const
{
return { "ChaCha20Poly1305", "AES-256/GCM", "AES-128/GCM" };
}
std::vector<std::string> Strict_Policy::allowed_signature_hashes() const
{
return { "SHA-512", "SHA-384"};
}
std::vector<std::string> Strict_Policy::allowed_macs() const
{
return { "AEAD" };
}
std::vector<std::string> Strict_Policy::allowed_key_exchange_methods() const
{
return { "CECPQ1", "ECDH" };
}
bool Strict_Policy::allow_tls10() const { return false; }
bool Strict_Policy::allow_tls11() const { return false; }
bool Strict_Policy::allow_tls12() const { return true; }
bool Strict_Policy::allow_dtls10() const { return false; }
bool Strict_Policy::allow_dtls12() const { return true; }
}
}
|