1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
/*
* TLS Handshake IO
* (C) 2012,2014 Jack Lloyd
*
* Released under the terms of the Botan license
*/
#include <botan/internal/tls_handshake_io.h>
#include <botan/internal/tls_messages.h>
#include <botan/internal/tls_record.h>
#include <botan/internal/tls_seq_numbers.h>
#include <botan/exceptn.h>
#include <chrono>
namespace Botan {
namespace TLS {
namespace {
inline size_t load_be24(const byte q[3])
{
return make_u32bit(0,
q[0],
q[1],
q[2]);
}
void store_be24(byte out[3], size_t val)
{
out[0] = get_byte<u32bit>(1, val);
out[1] = get_byte<u32bit>(2, val);
out[2] = get_byte<u32bit>(3, val);
}
}
Protocol_Version Stream_Handshake_IO::initial_record_version() const
{
return Protocol_Version::TLS_V10;
}
void Stream_Handshake_IO::add_record(const std::vector<byte>& record,
Record_Type record_type, u64bit)
{
if(record_type == HANDSHAKE)
{
m_queue.insert(m_queue.end(), record.begin(), record.end());
}
else if(record_type == CHANGE_CIPHER_SPEC)
{
if(record.size() != 1 || record[0] != 1)
throw Decoding_Error("Invalid ChangeCipherSpec");
// Pretend it's a regular handshake message of zero length
const byte ccs_hs[] = { HANDSHAKE_CCS, 0, 0, 0 };
m_queue.insert(m_queue.end(), ccs_hs, ccs_hs + sizeof(ccs_hs));
}
else
throw Decoding_Error("Unknown message type " + std::to_string(record_type) + " in handshake processing");
}
std::pair<Handshake_Type, std::vector<byte>>
Stream_Handshake_IO::get_next_record(bool)
{
if(m_queue.size() >= 4)
{
const size_t length = make_u32bit(0, m_queue[1], m_queue[2], m_queue[3]);
if(m_queue.size() >= length + 4)
{
Handshake_Type type = static_cast<Handshake_Type>(m_queue[0]);
std::vector<byte> contents(m_queue.begin() + 4,
m_queue.begin() + 4 + length);
m_queue.erase(m_queue.begin(), m_queue.begin() + 4 + length);
return std::make_pair(type, contents);
}
}
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
}
std::vector<byte>
Stream_Handshake_IO::format(const std::vector<byte>& msg,
Handshake_Type type) const
{
std::vector<byte> send_buf(4 + msg.size());
const size_t buf_size = msg.size();
send_buf[0] = type;
store_be24(&send_buf[1], buf_size);
copy_mem(&send_buf[4], &msg[0], msg.size());
return send_buf;
}
std::vector<byte> Stream_Handshake_IO::send(const Handshake_Message& msg)
{
const std::vector<byte> msg_bits = msg.serialize();
if(msg.type() == HANDSHAKE_CCS)
{
m_send_hs(CHANGE_CIPHER_SPEC, msg_bits);
return std::vector<byte>(); // not included in handshake hashes
}
const std::vector<byte> buf = format(msg_bits, msg.type());
m_send_hs(HANDSHAKE, buf);
return buf;
}
Protocol_Version Datagram_Handshake_IO::initial_record_version() const
{
return Protocol_Version::DTLS_V10;
}
namespace {
// 1 second initial timeout, 60 second max - see RFC 6347 sec 4.2.4.1
const u64bit INITIAL_TIMEOUT = 1*1000;
const u64bit MAXIMUM_TIMEOUT = 60*1000;
u64bit steady_clock_ms()
{
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch()).count();
}
}
bool Datagram_Handshake_IO::timeout_check()
{
if(m_last_write == 0 || (m_flights.size() > 1 && !m_flights.rbegin()->empty()))
{
/*
If we haven't written anything yet obviously no timeout.
Also no timeout possible if we are mid-flight,
*/
return false;
}
const u64bit ms_since_write = steady_clock_ms() - m_last_write;
if(ms_since_write < m_next_timeout)
return false;
std::vector<u16bit> flight;
if(m_flights.size() == 1)
flight = m_flights.at(0); // lost initial client hello
else
flight = m_flights.at(m_flights.size() - 2);
BOTAN_ASSERT(flight.size() > 0, "Nonempty flight to retransmit");
u16bit epoch = m_flight_data[flight[0]].epoch;
for(auto msg_seq : flight)
{
auto& msg = m_flight_data[msg_seq];
if(msg.epoch != epoch)
{
// Epoch gap: insert the CCS
std::vector<byte> ccs(1, 1);
m_send_hs(epoch, CHANGE_CIPHER_SPEC, ccs);
}
send_message(msg_seq, msg.epoch, msg.msg_type, msg.msg_bits);
epoch = msg.epoch;
}
m_next_timeout = std::min(2 * m_next_timeout, MAXIMUM_TIMEOUT);
return true;
}
void Datagram_Handshake_IO::add_record(const std::vector<byte>& record,
Record_Type record_type,
u64bit record_sequence)
{
const u16bit epoch = static_cast<u16bit>(record_sequence >> 48);
if(record_type == CHANGE_CIPHER_SPEC)
{
// TODO: check this is otherwise empty
m_ccs_epochs.insert(epoch);
return;
}
const size_t DTLS_HANDSHAKE_HEADER_LEN = 12;
const byte* record_bits = &record[0];
size_t record_size = record.size();
while(record_size)
{
if(record_size < DTLS_HANDSHAKE_HEADER_LEN)
return; // completely bogus? at least degenerate/weird
const byte msg_type = record_bits[0];
const size_t msg_len = load_be24(&record_bits[1]);
const u16bit message_seq = load_be<u16bit>(&record_bits[4], 0);
const size_t fragment_offset = load_be24(&record_bits[6]);
const size_t fragment_length = load_be24(&record_bits[9]);
const size_t total_size = DTLS_HANDSHAKE_HEADER_LEN + fragment_length;
if(record_size < total_size)
throw Decoding_Error("Bad lengths in DTLS header");
if(message_seq >= m_in_message_seq)
{
m_messages[message_seq].add_fragment(&record_bits[DTLS_HANDSHAKE_HEADER_LEN],
fragment_length,
fragment_offset,
epoch,
msg_type,
msg_len);
}
else
{
// TODO: detect retransmitted flight
}
record_bits += total_size;
record_size -= total_size;
}
}
std::pair<Handshake_Type, std::vector<byte>>
Datagram_Handshake_IO::get_next_record(bool expecting_ccs)
{
// Expecting a message means the last flight is concluded
if(!m_flights.rbegin()->empty())
m_flights.push_back(std::vector<u16bit>());
if(expecting_ccs)
{
if(!m_messages.empty())
{
const u16bit current_epoch = m_messages.begin()->second.epoch();
if(m_ccs_epochs.count(current_epoch))
return std::make_pair(HANDSHAKE_CCS, std::vector<byte>());
}
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
}
auto i = m_messages.find(m_in_message_seq);
if(i == m_messages.end() || !i->second.complete())
return std::make_pair(HANDSHAKE_NONE, std::vector<byte>());
m_in_message_seq += 1;
return i->second.message();
}
void Datagram_Handshake_IO::Handshake_Reassembly::add_fragment(
const byte fragment[],
size_t fragment_length,
size_t fragment_offset,
u16bit epoch,
byte msg_type,
size_t msg_length)
{
if(complete())
return; // already have entire message, ignore this
if(m_msg_type == HANDSHAKE_NONE)
{
m_epoch = epoch;
m_msg_type = msg_type;
m_msg_length = msg_length;
}
if(msg_type != m_msg_type || msg_length != m_msg_length || epoch != m_epoch)
throw Decoding_Error("Inconsistent values in fragmented DTLS handshake header");
if(fragment_offset > m_msg_length)
throw Decoding_Error("Fragment offset past end of message");
if(fragment_offset + fragment_length > m_msg_length)
throw Decoding_Error("Fragment overlaps past end of message");
if(fragment_offset == 0 && fragment_length == m_msg_length)
{
m_fragments.clear();
m_message.assign(fragment, fragment+fragment_length);
}
else
{
/*
* FIXME. This is a pretty lame way to do defragmentation, huge
* overhead with a tree node per byte.
*
* Also should confirm that all overlaps have no changes,
* otherwise we expose ourselves to the classic fingerprinting
* and IDS evasion attacks on IP fragmentation.
*/
for(size_t i = 0; i != fragment_length; ++i)
m_fragments[fragment_offset+i] = fragment[i];
if(m_fragments.size() == m_msg_length)
{
m_message.resize(m_msg_length);
for(size_t i = 0; i != m_msg_length; ++i)
m_message[i] = m_fragments[i];
m_fragments.clear();
}
}
}
bool Datagram_Handshake_IO::Handshake_Reassembly::complete() const
{
return (m_msg_type != HANDSHAKE_NONE && m_message.size() == m_msg_length);
}
std::pair<Handshake_Type, std::vector<byte>>
Datagram_Handshake_IO::Handshake_Reassembly::message() const
{
if(!complete())
throw Internal_Error("Datagram_Handshake_IO - message not complete");
return std::make_pair(static_cast<Handshake_Type>(m_msg_type), m_message);
}
std::vector<byte>
Datagram_Handshake_IO::format_fragment(const byte fragment[],
size_t frag_len,
u16bit frag_offset,
u16bit msg_len,
Handshake_Type type,
u16bit msg_sequence) const
{
std::vector<byte> send_buf(12 + frag_len);
send_buf[0] = type;
store_be24(&send_buf[1], msg_len);
store_be(msg_sequence, &send_buf[4]);
store_be24(&send_buf[6], frag_offset);
store_be24(&send_buf[9], frag_len);
copy_mem(&send_buf[12], &fragment[0], frag_len);
return send_buf;
}
std::vector<byte>
Datagram_Handshake_IO::format_w_seq(const std::vector<byte>& msg,
Handshake_Type type,
u16bit msg_sequence) const
{
return format_fragment(&msg[0], msg.size(), 0, msg.size(), type, msg_sequence);
}
std::vector<byte>
Datagram_Handshake_IO::format(const std::vector<byte>& msg,
Handshake_Type type) const
{
return format_w_seq(msg, type, m_in_message_seq - 1);
}
namespace {
size_t split_for_mtu(size_t mtu, size_t msg_size)
{
const size_t DTLS_HEADERS_SIZE = 25; // DTLS record+handshake headers
const size_t parts = (msg_size + mtu) / mtu;
if(parts + DTLS_HEADERS_SIZE > mtu)
return parts + 1;
return parts;
}
}
std::vector<byte>
Datagram_Handshake_IO::send(const Handshake_Message& msg)
{
const std::vector<byte> msg_bits = msg.serialize();
const u16bit epoch = m_seqs.current_write_epoch();
const Handshake_Type msg_type = msg.type();
if(msg_type == HANDSHAKE_CCS)
{
m_send_hs(epoch, CHANGE_CIPHER_SPEC, msg_bits);
return std::vector<byte>(); // not included in handshake hashes
}
// Note: not saving CCS, instead we know it was there due to change in epoch
m_flights.rbegin()->push_back(m_out_message_seq);
m_flight_data[m_out_message_seq] = Message_Info(epoch, msg_type, msg_bits);
m_out_message_seq += 1;
m_last_write = steady_clock_ms();
m_next_timeout = INITIAL_TIMEOUT;
return send_message(m_out_message_seq - 1, epoch, msg_type, msg_bits);
}
std::vector<byte> Datagram_Handshake_IO::send_message(u16bit msg_seq,
u16bit epoch,
Handshake_Type msg_type,
const std::vector<byte>& msg_bits)
{
const std::vector<byte> no_fragment =
format_w_seq(msg_bits, msg_type, msg_seq);
if(no_fragment.size() + DTLS_HEADER_SIZE <= m_mtu)
m_send_hs(epoch, HANDSHAKE, no_fragment);
else
{
const size_t parts = split_for_mtu(m_mtu, msg_bits.size());
const size_t parts_size = (msg_bits.size() + parts) / parts;
size_t frag_offset = 0;
while(frag_offset != msg_bits.size())
{
const size_t frag_len =
std::min<size_t>(msg_bits.size() - frag_offset,
parts_size);
m_send_hs(epoch,
HANDSHAKE,
format_fragment(&msg_bits[frag_offset],
frag_len,
frag_offset,
msg_bits.size(),
msg_type,
msg_seq));
frag_offset += frag_len;
}
}
return no_fragment;
}
}
}
|