1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/*
* TLS Channel
* (C) 2011,2012,2014,2015 Jack Lloyd
* 2016 Matthias Gierlings
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_TLS_CHANNEL_H_
#define BOTAN_TLS_CHANNEL_H_
#include <botan/tls_session.h>
#include <botan/tls_alert.h>
#include <botan/tls_session_manager.h>
#include <botan/tls_callbacks.h>
#include <botan/x509cert.h>
#include <functional>
#include <vector>
#include <string>
#include <map>
namespace Botan {
namespace TLS {
class Connection_Cipher_State;
class Connection_Sequence_Numbers;
class Handshake_State;
class Handshake_Message;
class Client_Hello;
class Server_Hello;
class Policy;
/**
* Generic interface for TLS endpoint
*/
class BOTAN_PUBLIC_API(2,0) Channel
{
public:
typedef std::function<void (const uint8_t[], size_t)> output_fn;
typedef std::function<void (const uint8_t[], size_t)> data_cb;
typedef std::function<void (Alert, const uint8_t[], size_t)> alert_cb;
typedef std::function<bool (const Session&)> handshake_cb;
typedef std::function<void (const Handshake_Message&)> handshake_msg_cb;
static size_t IO_BUF_DEFAULT_SIZE;
/**
* Set up a new TLS session
*
* @param callbacks contains a set of callback function references
* required by the TLS endpoint.
*
* @param session_manager manages session state
*
* @param rng a random number generator
*
* @param policy specifies other connection policy information
*
* @param is_datagram whether this is a DTLS session
*
* @param io_buf_sz This many bytes of memory will
* be preallocated for the read and write buffers. Smaller
* values just mean reallocations and copies are more likely.
*/
Channel(Callbacks& callbacks,
Session_Manager& session_manager,
RandomNumberGenerator& rng,
const Policy& policy,
bool is_datagram,
size_t io_buf_sz = IO_BUF_DEFAULT_SIZE);
/**
* DEPRECATED. This constructor is only provided for backward
* compatibility and should not be used in new implementations.
* (Not marked deprecated since it is only called internally, by
* other deprecated constructors)
*/
Channel(output_fn out,
data_cb app_data_cb,
alert_cb alert_cb,
handshake_cb hs_cb,
handshake_msg_cb hs_msg_cb,
Session_Manager& session_manager,
RandomNumberGenerator& rng,
const Policy& policy,
bool is_datagram,
size_t io_buf_sz = IO_BUF_DEFAULT_SIZE);
Channel(const Channel&) = delete;
Channel& operator=(const Channel&) = delete;
virtual ~Channel();
/**
* Inject TLS traffic received from counterparty
* @return a hint as the how many more bytes we need to process the
* current record (this may be 0 if on a record boundary)
*/
size_t received_data(const uint8_t buf[], size_t buf_size);
/**
* Inject TLS traffic received from counterparty
* @return a hint as the how many more bytes we need to process the
* current record (this may be 0 if on a record boundary)
*/
size_t received_data(const std::vector<uint8_t>& buf);
/**
* Inject plaintext intended for counterparty
* Throws an exception if is_active() is false
*/
void send(const uint8_t buf[], size_t buf_size);
/**
* Inject plaintext intended for counterparty
* Throws an exception if is_active() is false
*/
void send(const std::string& val);
/**
* Inject plaintext intended for counterparty
* Throws an exception if is_active() is false
*/
template<typename Alloc>
void send(const std::vector<unsigned char, Alloc>& val)
{
send(val.data(), val.size());
}
/**
* Send a TLS alert message. If the alert is fatal, the internal
* state (keys, etc) will be reset.
* @param alert the Alert to send
*/
void send_alert(const Alert& alert);
/**
* Send a warning alert
*/
void send_warning_alert(Alert::Type type) { send_alert(Alert(type, false)); }
/**
* Send a fatal alert
*/
void send_fatal_alert(Alert::Type type) { send_alert(Alert(type, true)); }
/**
* Send a close notification alert
*/
void close() { send_warning_alert(Alert::CLOSE_NOTIFY); }
/**
* @return true iff the connection is active for sending application data
*/
bool is_active() const;
/**
* @return true iff the connection has been definitely closed
*/
bool is_closed() const;
/**
* @return certificate chain of the peer (may be empty)
*/
std::vector<X509_Certificate> peer_cert_chain() const;
/**
* Key material export (RFC 5705)
* @param label a disambiguating label string
* @param context a per-association context value
* @param length the length of the desired key in bytes
* @return key of length bytes
*/
SymmetricKey key_material_export(const std::string& label,
const std::string& context,
size_t length) const;
/**
* Attempt to renegotiate the session
* @param force_full_renegotiation if true, require a full renegotiation,
* otherwise allow session resumption
*/
void renegotiate(bool force_full_renegotiation = false);
/**
* @return true iff the counterparty supports the secure
* renegotiation extensions.
*/
bool secure_renegotiation_supported() const;
/**
* Perform a handshake timeout check. This does nothing unless
* this is a DTLS channel with a pending handshake state, in
* which case we check for timeout and potentially retransmit
* handshake packets.
*/
bool timeout_check();
virtual std::string application_protocol() const = 0;
protected:
virtual void process_handshake_msg(const Handshake_State* active_state,
Handshake_State& pending_state,
Handshake_Type type,
const std::vector<uint8_t>& contents) = 0;
virtual void initiate_handshake(Handshake_State& state,
bool force_full_renegotiation) = 0;
virtual std::vector<X509_Certificate>
get_peer_cert_chain(const Handshake_State& state) const = 0;
virtual Handshake_State* new_handshake_state(class Handshake_IO* io) = 0;
Handshake_State& create_handshake_state(Protocol_Version version);
void inspect_handshake_message(const Handshake_Message& msg);
void activate_session();
void change_cipher_spec_reader(Connection_Side side);
void change_cipher_spec_writer(Connection_Side side);
/* secure renegotiation handling */
void secure_renegotiation_check(const Client_Hello* client_hello);
void secure_renegotiation_check(const Server_Hello* server_hello);
std::vector<uint8_t> secure_renegotiation_data_for_client_hello() const;
std::vector<uint8_t> secure_renegotiation_data_for_server_hello() const;
RandomNumberGenerator& rng() { return m_rng; }
Session_Manager& session_manager() { return m_session_manager; }
const Policy& policy() const { return m_policy; }
bool save_session(const Session& session);
Callbacks& callbacks() const { return m_callbacks; }
private:
void init(size_t io_buf_sze);
void send_record(uint8_t record_type, const std::vector<uint8_t>& record);
void send_record_under_epoch(uint16_t epoch, uint8_t record_type,
const std::vector<uint8_t>& record);
void send_record_array(uint16_t epoch, uint8_t record_type,
const uint8_t input[], size_t length);
void write_record(Connection_Cipher_State* cipher_state,
uint16_t epoch, uint8_t type, const uint8_t input[], size_t length);
Connection_Sequence_Numbers& sequence_numbers() const;
std::shared_ptr<Connection_Cipher_State> read_cipher_state_epoch(uint16_t epoch) const;
std::shared_ptr<Connection_Cipher_State> write_cipher_state_epoch(uint16_t epoch) const;
void reset_state();
const Handshake_State* active_state() const { return m_active_state.get(); }
const Handshake_State* pending_state() const { return m_pending_state.get(); }
/* methods to handle incoming traffic through Channel::receive_data. */
void process_handshake_ccs(const secure_vector<uint8_t>& record,
uint64_t record_sequence,
Record_Type record_type,
Protocol_Version record_version);
void process_application_data(uint64_t req_no, const secure_vector<uint8_t>& record);
void process_alert(const secure_vector<uint8_t>& record);
bool m_is_datagram;
/* callbacks */
std::unique_ptr<Compat_Callbacks> m_compat_callbacks;
Callbacks& m_callbacks;
/* external state */
Session_Manager& m_session_manager;
const Policy& m_policy;
RandomNumberGenerator& m_rng;
/* sequence number state */
std::unique_ptr<Connection_Sequence_Numbers> m_sequence_numbers;
/* pending and active connection states */
std::unique_ptr<Handshake_State> m_active_state;
std::unique_ptr<Handshake_State> m_pending_state;
/* cipher states for each epoch */
std::map<uint16_t, std::shared_ptr<Connection_Cipher_State>> m_write_cipher_states;
std::map<uint16_t, std::shared_ptr<Connection_Cipher_State>> m_read_cipher_states;
/* I/O buffers */
secure_vector<uint8_t> m_writebuf;
secure_vector<uint8_t> m_readbuf;
};
}
}
#endif
|