aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/tls/tls_channel.h
blob: 8aea2dab06deef668111abe44b719f5dda1ee6ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
* TLS Channel
* (C) 2011,2012,2014 Jack Lloyd
*
* Released under the terms of the Botan license
*/

#ifndef BOTAN_TLS_CHANNEL_H__
#define BOTAN_TLS_CHANNEL_H__

#include <botan/tls_policy.h>
#include <botan/tls_session.h>
#include <botan/tls_alert.h>
#include <botan/tls_session_manager.h>
#include <botan/x509cert.h>
#include <vector>
#include <string>
#include <map>

namespace Botan {

namespace TLS {

class Connection_Cipher_State;
class Connection_Sequence_Numbers;
class Handshake_State;

/**
* Generic interface for TLS endpoint
*/
class BOTAN_DLL Channel
   {
   public:
      /**
      * Inject TLS traffic received from counterparty
      * @return a hint as the how many more bytes we need to process the
      *         current record (this may be 0 if on a record boundary)
      */
      size_t received_data(const byte buf[], size_t buf_size);

      /**
      * Inject TLS traffic received from counterparty
      * @return a hint as the how many more bytes we need to process the
      *         current record (this may be 0 if on a record boundary)
      */
      size_t received_data(const std::vector<byte>& buf);

      /**
      * Perform a handshake timeout check. This does nothing unless
      * this is a DTLS channel with a pending handshake state, in
      * which case we check for timeout and potentially retransmit
      * handshake packets.
      */
      bool timeout_check();

      /**
      * Inject plaintext intended for counterparty
      * Throws an exception if is_active() is false
      */
      void send(const byte buf[], size_t buf_size);

      /**
      * Inject plaintext intended for counterparty
      * Throws an exception if is_active() is false
      */
      void send(const std::string& val);

      /**
      * Inject plaintext intended for counterparty
      * Throws an exception if is_active() is false
      */
      template<typename Alloc>
         void send(const std::vector<unsigned char, Alloc>& val)
         {
         send(&val[0], val.size());
         }

      /**
      * Send a TLS alert message. If the alert is fatal, the internal
      * state (keys, etc) will be reset.
      * @param alert the Alert to send
      */
      void send_alert(const Alert& alert);

      /**
      * Send a warning alert
      */
      void send_warning_alert(Alert::Type type) { send_alert(Alert(type, false)); }

      /**
      * Send a fatal alert
      */
      void send_fatal_alert(Alert::Type type) { send_alert(Alert(type, true)); }

      /**
      * Send a close notification alert
      */
      void close() { send_warning_alert(Alert::CLOSE_NOTIFY); }

      /**
      * @return true iff the connection is active for sending application data
      */
      bool is_active() const;

      /**
      * @return true iff the connection has been definitely closed
      */
      bool is_closed() const;

      /**
      * Attempt to renegotiate the session
      * @param force_full_renegotiation if true, require a full renegotiation,
      *                                 otherwise allow session resumption
      */
      void renegotiate(bool force_full_renegotiation = false);

      /**
      * @return true iff the peer supports heartbeat messages
      */
      bool peer_supports_heartbeats() const;

      /**
      * @return true iff we are allowed to send heartbeat messages
      */
      bool heartbeat_sending_allowed() const;

      /**
      * @return true iff the counterparty supports the secure
      * renegotiation extensions.
      */
      bool secure_renegotiation_supported() const;

      /**
      * Attempt to send a heartbeat message (if negotiated with counterparty)
      * @param payload will be echoed back
      * @param payload_size size of payload in bytes
      */
      void heartbeat(const byte payload[], size_t payload_size);

      /**
      * Attempt to send a heartbeat message (if negotiated with counterparty)
      */
      void heartbeat() { heartbeat(nullptr, 0); }

      /**
      * @return certificate chain of the peer (may be empty)
      */
      std::vector<X509_Certificate> peer_cert_chain() const;

      /**
      * Key material export (RFC 5705)
      * @param label a disambiguating label string
      * @param context a per-association context value
      * @param length the length of the desired key in bytes
      * @return key of length bytes
      */
      SymmetricKey key_material_export(const std::string& label,
                                       const std::string& context,
                                       size_t length) const;

      Channel(std::function<void (const byte[], size_t)> socket_output_fn,
              std::function<void (const byte[], size_t)> data_cb,
              std::function<void (Alert, const byte[], size_t)> alert_cb,
              std::function<bool (const Session&)> handshake_cb,
              Session_Manager& session_manager,
              RandomNumberGenerator& rng,
              bool is_datagram,
              size_t reserved_io_buffer_size);

      Channel(const Channel&) = delete;

      Channel& operator=(const Channel&) = delete;

      virtual ~Channel();
   protected:

      virtual void process_handshake_msg(const Handshake_State* active_state,
                                         Handshake_State& pending_state,
                                         Handshake_Type type,
                                         const std::vector<byte>& contents) = 0;

      virtual void initiate_handshake(Handshake_State& state,
                                      bool force_full_renegotiation) = 0;

      virtual std::vector<X509_Certificate>
         get_peer_cert_chain(const Handshake_State& state) const = 0;

      virtual Handshake_State* new_handshake_state(class Handshake_IO* io) = 0;

      Handshake_State& create_handshake_state(Protocol_Version version);

      void activate_session();

      void change_cipher_spec_reader(Connection_Side side);

      void change_cipher_spec_writer(Connection_Side side);

      /* secure renegotiation handling */

      void secure_renegotiation_check(const class Client_Hello* client_hello);
      void secure_renegotiation_check(const class Server_Hello* server_hello);

      std::vector<byte> secure_renegotiation_data_for_client_hello() const;
      std::vector<byte> secure_renegotiation_data_for_server_hello() const;

      RandomNumberGenerator& rng() { return m_rng; }

      Session_Manager& session_manager() { return m_session_manager; }

      bool save_session(const Session& session) const { return m_handshake_cb(session); }

   private:
      size_t maximum_fragment_size() const;

      void send_record(byte record_type, const std::vector<byte>& record);

      void send_record_under_epoch(u16bit epoch, byte record_type,
                                   const std::vector<byte>& record);

      void send_record_array(u16bit epoch, byte record_type,
                             const byte input[], size_t length);

      void write_record(Connection_Cipher_State* cipher_state,
                        u16bit epoch, byte type, const byte input[], size_t length);

      Connection_Sequence_Numbers& sequence_numbers() const;

      std::shared_ptr<Connection_Cipher_State> read_cipher_state_epoch(u16bit epoch) const;

      std::shared_ptr<Connection_Cipher_State> write_cipher_state_epoch(u16bit epoch) const;

      void reset_state();

      const Handshake_State* active_state() const { return m_active_state.get(); }

      const Handshake_State* pending_state() const { return m_pending_state.get(); }

      bool m_is_datagram;

      /* callbacks */
      std::function<bool (const Session&)> m_handshake_cb;
      std::function<void (const byte[], size_t)> m_data_cb;
      std::function<void (Alert, const byte[], size_t)> m_alert_cb;
      std::function<void (const byte[], size_t)> m_output_fn;

      /* external state */
      RandomNumberGenerator& m_rng;
      Session_Manager& m_session_manager;

      /* sequence number state */
      std::unique_ptr<Connection_Sequence_Numbers> m_sequence_numbers;

      /* pending and active connection states */
      std::unique_ptr<Handshake_State> m_active_state;
      std::unique_ptr<Handshake_State> m_pending_state;

      /* cipher states for each epoch */
      std::map<u16bit, std::shared_ptr<Connection_Cipher_State>> m_write_cipher_states;
      std::map<u16bit, std::shared_ptr<Connection_Cipher_State>> m_read_cipher_states;

      /* I/O buffers */
      secure_vector<byte> m_writebuf;
      secure_vector<byte> m_readbuf;
   };

}

}

#endif