1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
/*
* Server Key Exchange Message
* (C) 2004-2010,2012,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/internal/tls_messages.h>
#include <botan/internal/tls_reader.h>
#include <botan/internal/tls_extensions.h>
#include <botan/internal/tls_handshake_io.h>
#include <botan/credentials_manager.h>
#include <botan/loadstor.h>
#include <botan/pubkey.h>
#include <botan/oids.h>
#include <botan/dh.h>
#include <botan/ecdh.h>
#if defined(BOTAN_HAS_SRP6)
#include <botan/srp6.h>
#endif
namespace Botan {
namespace TLS {
/**
* Create a new Server Key Exchange message
*/
Server_Key_Exchange::Server_Key_Exchange(Handshake_IO& io,
Handshake_State& state,
const Policy& policy,
Credentials_Manager& creds,
RandomNumberGenerator& rng,
const Private_Key* signing_key)
{
const std::string hostname = state.client_hello()->sni_hostname();
const std::string kex_algo = state.ciphersuite().kex_algo();
if(kex_algo == "PSK" || kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK")
{
std::string identity_hint =
creds.psk_identity_hint("tls-server", hostname);
append_tls_length_value(m_params, identity_hint, 2);
}
if(kex_algo == "DH" || kex_algo == "DHE_PSK")
{
std::unique_ptr<DH_PrivateKey> dh(new DH_PrivateKey(rng, policy.dh_group()));
append_tls_length_value(m_params, BigInt::encode(dh->get_domain().get_p()), 2);
append_tls_length_value(m_params, BigInt::encode(dh->get_domain().get_g()), 2);
append_tls_length_value(m_params, dh->public_value(), 2);
m_kex_key.reset(dh.release());
}
else if(kex_algo == "ECDH" || kex_algo == "ECDHE_PSK")
{
const std::vector<std::string>& curves =
state.client_hello()->supported_ecc_curves();
if(curves.empty())
throw Internal_Error("Client sent no ECC extension but we negotiated ECDH");
const std::string curve_name = policy.choose_curve(curves);
if(curve_name == "")
throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
"Could not agree on an ECC curve with the client");
EC_Group ec_group(curve_name);
std::unique_ptr<ECDH_PrivateKey> ecdh(new ECDH_PrivateKey(rng, ec_group));
const std::string ecdh_domain_oid = ecdh->domain().get_oid();
const std::string domain = OIDS::lookup(OID(ecdh_domain_oid));
if(domain == "")
throw Internal_Error("Could not find name of ECDH domain " + ecdh_domain_oid);
const u16bit named_curve_id = Supported_Elliptic_Curves::name_to_curve_id(domain);
m_params.push_back(3); // named curve
m_params.push_back(get_byte(0, named_curve_id));
m_params.push_back(get_byte(1, named_curve_id));
append_tls_length_value(m_params, ecdh->public_value(), 1);
m_kex_key.reset(ecdh.release());
}
#if defined(BOTAN_HAS_SRP6)
else if(kex_algo == "SRP_SHA")
{
const std::string srp_identifier = state.client_hello()->srp_identifier();
std::string group_id;
BigInt v;
std::vector<byte> salt;
const bool found = creds.srp_verifier("tls-server", hostname,
srp_identifier,
group_id, v, salt,
policy.hide_unknown_users());
if(!found)
throw TLS_Exception(Alert::UNKNOWN_PSK_IDENTITY,
"Unknown SRP user " + srp_identifier);
m_srp_params.reset(new SRP6_Server_Session);
BigInt B = m_srp_params->step1(v, group_id,
"SHA-1", rng);
DL_Group group(group_id);
append_tls_length_value(m_params, BigInt::encode(group.get_p()), 2);
append_tls_length_value(m_params, BigInt::encode(group.get_g()), 2);
append_tls_length_value(m_params, salt, 1);
append_tls_length_value(m_params, BigInt::encode(B), 2);
}
#endif
else if(kex_algo != "PSK")
throw Internal_Error("Server_Key_Exchange: Unknown kex type " + kex_algo);
if(state.ciphersuite().sig_algo() != "")
{
BOTAN_ASSERT(signing_key, "Signing key was set");
std::pair<std::string, Signature_Format> format =
state.choose_sig_format(*signing_key, m_hash_algo, m_sig_algo, false, policy);
PK_Signer signer(*signing_key, format.first, format.second);
signer.update(state.client_hello()->random());
signer.update(state.server_hello()->random());
signer.update(params());
m_signature = signer.signature(rng);
}
state.hash().update(io.send(*this));
}
/**
* Deserialize a Server Key Exchange message
*/
Server_Key_Exchange::Server_Key_Exchange(const std::vector<byte>& buf,
const std::string& kex_algo,
const std::string& sig_algo,
Protocol_Version version)
{
TLS_Data_Reader reader("ServerKeyExchange", buf);
/*
* Here we are deserializing enough to find out what offset the
* signature is at. All processing is done when the Client Key Exchange
* is prepared.
*/
if(kex_algo == "PSK" || kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK")
{
reader.get_string(2, 0, 65535); // identity hint
}
if(kex_algo == "DH" || kex_algo == "DHE_PSK")
{
// 3 bigints, DH p, g, Y
for(size_t i = 0; i != 3; ++i)
{
reader.get_range<byte>(2, 1, 65535);
}
}
else if(kex_algo == "ECDH" || kex_algo == "ECDHE_PSK")
{
reader.get_byte(); // curve type
reader.get_u16bit(); // curve id
reader.get_range<byte>(1, 1, 255); // public key
}
else if(kex_algo == "SRP_SHA")
{
// 2 bigints (N,g) then salt, then server B
reader.get_range<byte>(2, 1, 65535);
reader.get_range<byte>(2, 1, 65535);
reader.get_range<byte>(1, 1, 255);
reader.get_range<byte>(2, 1, 65535);
}
else if(kex_algo != "PSK")
throw Decoding_Error("Server_Key_Exchange: Unsupported kex type " + kex_algo);
m_params.assign(buf.data(), buf.data() + reader.read_so_far());
if(sig_algo != "")
{
if(version.supports_negotiable_signature_algorithms())
{
m_hash_algo = Signature_Algorithms::hash_algo_name(reader.get_byte());
m_sig_algo = Signature_Algorithms::sig_algo_name(reader.get_byte());
}
m_signature = reader.get_range<byte>(2, 0, 65535);
}
reader.assert_done();
}
Server_Key_Exchange::~Server_Key_Exchange() {}
/**
* Serialize a Server Key Exchange message
*/
std::vector<byte> Server_Key_Exchange::serialize() const
{
std::vector<byte> buf = params();
if(m_signature.size())
{
// This should be an explicit version check
if(m_hash_algo != "" && m_sig_algo != "")
{
buf.push_back(Signature_Algorithms::hash_algo_code(m_hash_algo));
buf.push_back(Signature_Algorithms::sig_algo_code(m_sig_algo));
}
append_tls_length_value(buf, m_signature, 2);
}
return buf;
}
/**
* Verify a Server Key Exchange message
*/
bool Server_Key_Exchange::verify(const Public_Key& server_key,
const Handshake_State& state) const
{
std::pair<std::string, Signature_Format> format =
state.understand_sig_format(server_key, m_hash_algo, m_sig_algo);
PK_Verifier verifier(server_key, format.first, format.second);
verifier.update(state.client_hello()->random());
verifier.update(state.server_hello()->random());
verifier.update(params());
return verifier.check_signature(m_signature);
}
const Private_Key& Server_Key_Exchange::server_kex_key() const
{
BOTAN_ASSERT_NONNULL(m_kex_key);
return *m_kex_key;
}
}
}
|