aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/tls/msg_client_kex.cpp
blob: 2d132af044346079175644cba57ecb4b380f7a87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
* Client Key Exchange Message
* (C) 2004-2010,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/tls_messages.h>
#include <botan/tls_extensions.h>
#include <botan/internal/tls_reader.h>
#include <botan/internal/tls_handshake_io.h>
#include <botan/internal/tls_handshake_state.h>
#include <botan/internal/tls_handshake_hash.h>
#include <botan/credentials_manager.h>
#include <botan/rng.h>
#include <botan/loadstor.h>
#include <botan/internal/ct_utils.h>

#include <botan/pubkey.h>

#include <botan/dh.h>
#include <botan/ecdh.h>
#include <botan/rsa.h>

#if defined(BOTAN_HAS_CURVE_25519)
  #include <botan/curve25519.h>
#endif

#if defined(BOTAN_HAS_CECPQ1)
  #include <botan/cecpq1.h>
#endif

#if defined(BOTAN_HAS_SRP6)
  #include <botan/srp6.h>
#endif

namespace Botan {

namespace TLS {

/*
* Create a new Client Key Exchange message
*/
Client_Key_Exchange::Client_Key_Exchange(Handshake_IO& io,
                                         Handshake_State& state,
                                         const Policy& policy,
                                         Credentials_Manager& creds,
                                         const Public_Key* server_public_key,
                                         const std::string& hostname,
                                         RandomNumberGenerator& rng)
   {
   const std::string kex_algo = state.ciphersuite().kex_algo();

   if(kex_algo == "PSK")
      {
      std::string identity_hint = "";

      if(state.server_kex())
         {
         TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params());
         identity_hint = reader.get_string(2, 0, 65535);
         }

      const std::string psk_identity =
         creds.psk_identity("tls-client", hostname, identity_hint);

      append_tls_length_value(m_key_material, psk_identity, 2);

      SymmetricKey psk = creds.psk("tls-client", hostname, psk_identity);

      std::vector<uint8_t> zeros(psk.length());

      append_tls_length_value(m_pre_master, zeros, 2);
      append_tls_length_value(m_pre_master, psk.bits_of(), 2);
      }
   else if(state.server_kex())
      {
      TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params());

      SymmetricKey psk;

      if(kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK")
         {
         std::string identity_hint = reader.get_string(2, 0, 65535);

         const std::string psk_identity =
            creds.psk_identity("tls-client", hostname, identity_hint);

         append_tls_length_value(m_key_material, psk_identity, 2);

         psk = creds.psk("tls-client", hostname, psk_identity);
         }

      if(kex_algo == "DH" || kex_algo == "DHE_PSK")
         {
         BigInt p = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));
         BigInt g = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));
         BigInt Y = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));

         if(reader.remaining_bytes())
            throw Decoding_Error("Bad params size for DH key exchange");

         /*
         * A basic check for key validity. As we do not know q here we
         * cannot check that Y is in the right subgroup. However since
         * our key is ephemeral there does not seem to be any
         * advantage to bogus keys anyway.
         */
         if(Y <= 1 || Y >= p - 1)
            throw TLS_Exception(Alert::INSUFFICIENT_SECURITY,
                                "Server sent bad DH key for DHE exchange");

         DL_Group group(p, g);

         if(!group.verify_group(rng, false))
            throw TLS_Exception(Alert::INSUFFICIENT_SECURITY,
                                "DH group validation failed");

         DH_PublicKey counterparty_key(group, Y);

         policy.check_peer_key_acceptable(counterparty_key);

         DH_PrivateKey priv_key(rng, group);

         PK_Key_Agreement ka(priv_key, rng, "Raw");

         secure_vector<uint8_t> dh_secret = CT::strip_leading_zeros(
            ka.derive_key(0, counterparty_key.public_value()).bits_of());

         if(kex_algo == "DH")
            m_pre_master = dh_secret;
         else
            {
            append_tls_length_value(m_pre_master, dh_secret, 2);
            append_tls_length_value(m_pre_master, psk.bits_of(), 2);
            }

         append_tls_length_value(m_key_material, priv_key.public_value(), 2);
         }
      else if(kex_algo == "ECDH" || kex_algo == "ECDHE_PSK")
         {
         const uint8_t curve_type = reader.get_byte();

         if(curve_type != 3)
            throw Decoding_Error("Server sent non-named ECC curve");

         const uint16_t curve_id = reader.get_uint16_t();

         const std::string curve_name = Supported_Elliptic_Curves::curve_id_to_name(curve_id);

         if(curve_name == "")
            throw Decoding_Error("Server sent unknown named curve " + std::to_string(curve_id));

         if(!policy.allowed_ecc_curve(curve_name))
            {
            throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
                                "Server sent ECC curve prohibited by policy");
            }

         const std::vector<uint8_t> ecdh_key = reader.get_range<uint8_t>(1, 1, 255);
         std::vector<uint8_t> our_ecdh_public;
         secure_vector<uint8_t> ecdh_secret;

         if(curve_name == "x25519")
            {
#if defined(BOTAN_HAS_CURVE_25519)
            if(ecdh_key.size() != 32)
               throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "Invalid X25519 key size");

            Curve25519_PublicKey counterparty_key(ecdh_key);
            policy.check_peer_key_acceptable(counterparty_key);
            Curve25519_PrivateKey priv_key(rng);
            PK_Key_Agreement ka(priv_key, rng, "Raw");
            ecdh_secret = ka.derive_key(0, counterparty_key.public_value()).bits_of();

            // X25519 is always compressed but sent as "uncompressed" in TLS
            our_ecdh_public = priv_key.public_value();
#else
            throw Internal_Error("Negotiated X25519 somehow, but it is disabled");
#endif
            }
         else
            {
            EC_Group group(curve_name);
            ECDH_PublicKey counterparty_key(group, OS2ECP(ecdh_key, group.get_curve()));
            policy.check_peer_key_acceptable(counterparty_key);
            ECDH_PrivateKey priv_key(rng, group);
            PK_Key_Agreement ka(priv_key, rng, "Raw");
            ecdh_secret = ka.derive_key(0, counterparty_key.public_value()).bits_of();

            // follow server's preference for point compression
            our_ecdh_public = priv_key.public_value(
               state.server_hello()->prefers_compressed_ec_points() ? PointGFp::COMPRESSED : PointGFp::UNCOMPRESSED);
            }

         if(kex_algo == "ECDH")
            m_pre_master = ecdh_secret;
         else
            {
            append_tls_length_value(m_pre_master, ecdh_secret, 2);
            append_tls_length_value(m_pre_master, psk.bits_of(), 2);
            }

         append_tls_length_value(m_key_material, our_ecdh_public, 1);
         }
#if defined(BOTAN_HAS_SRP6)
      else if(kex_algo == "SRP_SHA")
         {
         const BigInt N = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));
         const BigInt g = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));
         std::vector<uint8_t> salt = reader.get_range<uint8_t>(1, 1, 255);
         const BigInt B = BigInt::decode(reader.get_range<uint8_t>(2, 1, 65535));

         const std::string srp_group = srp6_group_identifier(N, g);

         const std::string srp_identifier =
            creds.srp_identifier("tls-client", hostname);

         const std::string srp_password =
            creds.srp_password("tls-client", hostname, srp_identifier);

         std::pair<BigInt, SymmetricKey> srp_vals =
            srp6_client_agree(srp_identifier,
                              srp_password,
                              srp_group,
                              "SHA-1",
                              salt,
                              B,
                              rng);

         append_tls_length_value(m_key_material, BigInt::encode(srp_vals.first), 2);
         m_pre_master = srp_vals.second.bits_of();
         }
#endif

#if defined(BOTAN_HAS_CECPQ1)
      else if(kex_algo == "CECPQ1")
         {
         const std::vector<uint8_t> cecpq1_offer = reader.get_range<uint8_t>(2, 1, 65535);

         if(cecpq1_offer.size() != CECPQ1_OFFER_BYTES)
            throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "Invalid CECPQ1 key size");

         std::vector<uint8_t> newhope_accept(CECPQ1_ACCEPT_BYTES);
         secure_vector<uint8_t> shared_secret(CECPQ1_SHARED_KEY_BYTES);
         CECPQ1_accept(shared_secret.data(), newhope_accept.data(), cecpq1_offer.data(), rng);
         append_tls_length_value(m_key_material, newhope_accept, 2);
         m_pre_master = shared_secret;
         }
#endif
      else
         {
         throw Internal_Error("Client_Key_Exchange: Unknown kex " + kex_algo);
         }

      reader.assert_done();
      }
   else
      {
      // No server key exchange msg better mean RSA kex + RSA key in cert

      if(kex_algo != "RSA")
         throw Unexpected_Message("No server kex but negotiated kex " + kex_algo);

      if(!server_public_key)
         throw Internal_Error("No server public key for RSA exchange");

      if(auto rsa_pub = dynamic_cast<const RSA_PublicKey*>(server_public_key))
         {
         const Protocol_Version offered_version = state.client_hello()->version();

         m_pre_master = rng.random_vec(48);
         m_pre_master[0] = offered_version.major_version();
         m_pre_master[1] = offered_version.minor_version();

         PK_Encryptor_EME encryptor(*rsa_pub, rng, "PKCS1v15");

         const std::vector<uint8_t> encrypted_key = encryptor.encrypt(m_pre_master, rng);

         append_tls_length_value(m_key_material, encrypted_key, 2);
         }
      else
         throw TLS_Exception(Alert::HANDSHAKE_FAILURE,
                             "Expected a RSA key in server cert but got " +
                             server_public_key->algo_name());
      }

   state.hash().update(io.send(*this));
   }

/*
* Read a Client Key Exchange message
*/
Client_Key_Exchange::Client_Key_Exchange(const std::vector<uint8_t>& contents,
                                         const Handshake_State& state,
                                         const Private_Key* server_rsa_kex_key,
                                         Credentials_Manager& creds,
                                         const Policy& policy,
                                         RandomNumberGenerator& rng)
   {
   const std::string kex_algo = state.ciphersuite().kex_algo();

   if(kex_algo == "RSA")
      {
      BOTAN_ASSERT(state.server_certs() && !state.server_certs()->cert_chain().empty(),
                   "RSA key exchange negotiated so server sent a certificate");

      if(!server_rsa_kex_key)
         throw Internal_Error("Expected RSA kex but no server kex key set");

      if(!dynamic_cast<const RSA_PrivateKey*>(server_rsa_kex_key))
         throw Internal_Error("Expected RSA key but got " + server_rsa_kex_key->algo_name());

      TLS_Data_Reader reader("ClientKeyExchange", contents);
      const std::vector<uint8_t> encrypted_pre_master = reader.get_range<uint8_t>(2, 0, 65535);

      PK_Decryptor_EME decryptor(*server_rsa_kex_key, rng, "PKCS1v15");

      const uint8_t client_major = state.client_hello()->version().major_version();
      const uint8_t client_minor = state.client_hello()->version().minor_version();

      /*
      * PK_Decryptor::decrypt_or_random will return a random value if
      * either the length does not match the expected value or if the
      * version number embedded in the PMS does not match the one sent
      * in the client hello.
      */
      const size_t expected_plaintext_size = 48;
      const size_t expected_content_size = 2;
      const uint8_t expected_content_bytes[expected_content_size] = { client_major, client_minor };
      const uint8_t expected_content_pos[expected_content_size] = { 0, 1 };

      m_pre_master =
         decryptor.decrypt_or_random(encrypted_pre_master.data(),
                                     encrypted_pre_master.size(),
                                     expected_plaintext_size,
                                     rng,
                                     expected_content_bytes,
                                     expected_content_pos,
                                     expected_content_size);
      }
   else
      {
      TLS_Data_Reader reader("ClientKeyExchange", contents);

      SymmetricKey psk;

      if(kex_algo == "PSK" || kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK")
         {
         const std::string psk_identity = reader.get_string(2, 0, 65535);

         psk = creds.psk("tls-server",
                         state.client_hello()->sni_hostname(),
                         psk_identity);

         if(psk.length() == 0)
            {
            if(policy.hide_unknown_users())
               psk = SymmetricKey(rng, 16);
            else
               throw TLS_Exception(Alert::UNKNOWN_PSK_IDENTITY,
                                   "No PSK for identifier " + psk_identity);
            }
         }

      if(kex_algo == "PSK")
         {
         std::vector<uint8_t> zeros(psk.length());
         append_tls_length_value(m_pre_master, zeros, 2);
         append_tls_length_value(m_pre_master, psk.bits_of(), 2);
         }
#if defined(BOTAN_HAS_SRP6)
      else if(kex_algo == "SRP_SHA")
         {
         SRP6_Server_Session& srp = state.server_kex()->server_srp_params();

         m_pre_master = srp.step2(BigInt::decode(reader.get_range<uint8_t>(2, 0, 65535))).bits_of();
         }
#endif
#if defined(BOTAN_HAS_CECPQ1)
      else if(kex_algo == "CECPQ1")
         {
         const CECPQ1_key& cecpq1_offer = state.server_kex()->cecpq1_key();

         const std::vector<uint8_t> cecpq1_accept = reader.get_range<uint8_t>(2, 0, 65535);
         if(cecpq1_accept.size() != CECPQ1_ACCEPT_BYTES)
            throw Decoding_Error("Invalid size for CECPQ1 accept message");

         m_pre_master.resize(CECPQ1_SHARED_KEY_BYTES);
         CECPQ1_finish(m_pre_master.data(), cecpq1_offer, cecpq1_accept.data());
         }
#endif
      else if(kex_algo == "DH" || kex_algo == "DHE_PSK" ||
              kex_algo == "ECDH" || kex_algo == "ECDHE_PSK")
         {
         const Private_Key& private_key = state.server_kex()->server_kex_key();

         const PK_Key_Agreement_Key* ka_key =
            dynamic_cast<const PK_Key_Agreement_Key*>(&private_key);

         if(!ka_key)
            throw Internal_Error("Expected key agreement key type but got " +
                                 private_key.algo_name());

         try
            {
            PK_Key_Agreement ka(*ka_key, rng, "Raw");

            std::vector<uint8_t> client_pubkey;

            if(ka_key->algo_name() == "DH")
               client_pubkey = reader.get_range<uint8_t>(2, 0, 65535);
            else
               client_pubkey = reader.get_range<uint8_t>(1, 0, 255);

            secure_vector<uint8_t> shared_secret = ka.derive_key(0, client_pubkey).bits_of();

            if(ka_key->algo_name() == "DH")
               shared_secret = CT::strip_leading_zeros(shared_secret);

            if(kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK")
               {
               append_tls_length_value(m_pre_master, shared_secret, 2);
               append_tls_length_value(m_pre_master, psk.bits_of(), 2);
               }
            else
               m_pre_master = shared_secret;
            }
         catch(std::exception &)
            {
            /*
            * Something failed in the DH computation. To avoid possible
            * timing attacks, randomize the pre-master output and carry
            * on, allowing the protocol to fail later in the finished
            * checks.
            */
            m_pre_master = rng.random_vec(ka_key->public_value().size());
            }
         }
      else
         throw Internal_Error("Client_Key_Exchange: Unknown kex type " + kex_algo);
      }
   }

}

}