1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/*
* Random Number Generator base classes
* (C) 1999-2009,2015,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_RANDOM_NUMBER_GENERATOR_H__
#define BOTAN_RANDOM_NUMBER_GENERATOR_H__
#include <botan/entropy_src.h>
#include <botan/secmem.h>
#include <botan/exceptn.h>
#include <chrono>
#include <string>
#include <mutex>
namespace Botan {
class Entropy_Sources;
/**
* An interface to a cryptographic random number generator
*/
class BOTAN_DLL RandomNumberGenerator
{
public:
virtual ~RandomNumberGenerator() = default;
RandomNumberGenerator() = default;
/*
* Never copy a RNG, create a new one
*/
RandomNumberGenerator(const RandomNumberGenerator& rng) = delete;
RandomNumberGenerator& operator=(const RandomNumberGenerator& rng) = delete;
/**
* Randomize a byte array.
* @param output the byte array to hold the random output.
* @param length the length of the byte array output.
*/
virtual void randomize(byte output[], size_t length) = 0;
/**
* Incorporate some additional data into the RNG state. For
* example adding nonces or timestamps from a peer's protocol
* message can help hedge against VM state rollback attacks.
* A few RNG types do not accept any externally provided input,
* in which case this function is a no-op.
*
* @param inputs a byte array containg the entropy to be added
* @param length the length of the byte array in
*/
virtual void add_entropy(const byte input[], size_t length) = 0;
/**
* Incorporate some additional data into the RNG state.
*/
template<typename T> void add_entropy_T(const T& t)
{
this->add_entropy(reinterpret_cast<const uint8_t*>(&t), sizeof(T));
}
/**
* Incorporate entropy into the RNG state then produce output.
* Some RNG types implement this using a single operation, default
* calls add_entropy + randomize in sequence.
*
* Use this to further bind the outputs to your current
* process/protocol state. For instance if generating a new key
* for use in a session, include a session ID or other such
* value. See NIST SP 800-90 A, B, C series for more ideas.
*/
virtual void randomize_with_input(byte output[], size_t output_len,
const byte input[], size_t input_len);
/**
* This calls `randomize_with_input` using some timestamps as extra input.
*
* For a stateful RNG using non-random but potentially unique data as the
* additional_input can help protect against problems with fork, VM state
* rollback, or other cases where somehow an RNG state is duplicated. If
* both of the duplicated RNG states later incorporate a timestamp (and the
* timestamps don't themselves repeat), their outputs will diverge.
*/
virtual void randomize_with_ts_input(byte output[], size_t output_len);
/**
* Return the name of this RNG type
*/
virtual std::string name() const = 0;
/**
* Clear all internally held values of this RNG
* @post is_seeded() == false
*/
virtual void clear() = 0;
/**
* Check whether this RNG is seeded.
* @return true if this RNG was already seeded, false otherwise.
*/
virtual bool is_seeded() const = 0;
/**
* Poll provided sources for up to poll_bits bits of entropy
* or until the timeout expires. Returns estimate of the number
* of bits collected.
*/
virtual size_t reseed(Entropy_Sources& srcs,
size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS,
std::chrono::milliseconds poll_timeout = BOTAN_RNG_RESEED_DEFAULT_TIMEOUT);
/**
* Reseed by reading specified bits from the RNG
*/
virtual void reseed_from_rng(RandomNumberGenerator& rng,
size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS);
// Some utility functions built on the interface above:
/**
* Return a random vector
* @param bytes number of bytes in the result
* @return randomized vector of length bytes
*/
secure_vector<byte> random_vec(size_t bytes)
{
secure_vector<byte> output(bytes);
this->randomize(output.data(), output.size());
return output;
}
/**
* Return a random byte
* @return random byte
*/
byte next_byte()
{
byte b;
this->randomize(&b, 1);
return b;
}
byte next_nonzero_byte()
{
byte b = this->next_byte();
while(b == 0)
b = this->next_byte();
return b;
}
/**
* Create a seeded and active RNG object for general application use
* Added in 1.8.0
* Use AutoSeeded_RNG instead
*/
BOTAN_DEPRECATED("Use AutoSeeded_RNG")
static RandomNumberGenerator* make_rng();
};
/**
* Convenience typedef
*/
typedef RandomNumberGenerator RNG;
/**
* Hardware RNG has no members but exists to tag hardware RNG types
*/
class BOTAN_DLL Hardware_RNG : public RandomNumberGenerator
{
};
/**
* Null/stub RNG - fails if you try to use it for anything
* This is not generally useful except for in certain tests
*/
class BOTAN_DLL Null_RNG final : public RandomNumberGenerator
{
public:
bool is_seeded() const override { return false; }
void clear() override {}
void randomize(byte[], size_t) override
{
throw Exception("Null_RNG called");
}
void add_entropy(const byte[], size_t) override {}
std::string name() const override { return "Null_RNG"; }
};
/**
* Wraps access to a RNG in a mutex
*/
class BOTAN_DLL Serialized_RNG final : public RandomNumberGenerator
{
public:
void randomize(byte out[], size_t len) override
{
std::lock_guard<std::mutex> lock(m_mutex);
m_rng->randomize(out, len);
}
bool is_seeded() const override
{
std::lock_guard<std::mutex> lock(m_mutex);
return m_rng->is_seeded();
}
void clear() override
{
std::lock_guard<std::mutex> lock(m_mutex);
m_rng->clear();
}
std::string name() const override
{
std::lock_guard<std::mutex> lock(m_mutex);
return m_rng->name();
}
size_t reseed(Entropy_Sources& src,
size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS,
std::chrono::milliseconds poll_timeout = BOTAN_RNG_RESEED_DEFAULT_TIMEOUT) override
{
std::lock_guard<std::mutex> lock(m_mutex);
return m_rng->reseed(src, poll_bits, poll_timeout);
}
void add_entropy(const byte in[], size_t len) override
{
std::lock_guard<std::mutex> lock(m_mutex);
m_rng->add_entropy(in, len);
}
BOTAN_DEPRECATED("Create an AutoSeeded_RNG for other constructor") Serialized_RNG();
explicit Serialized_RNG(RandomNumberGenerator* rng) : m_rng(rng) {}
private:
mutable std::mutex m_mutex;
std::unique_ptr<RandomNumberGenerator> m_rng;
};
}
#endif
|