1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* Random Number Generator
* (C) 1999-2008,2016 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/rng.h>
#include <botan/hmac_drbg.h>
#include <botan/auto_rng.h>
#include <botan/entropy_src.h>
#include <botan/loadstor.h>
#include <botan/internal/os_utils.h>
#include <chrono>
namespace Botan {
size_t RandomNumberGenerator::reseed(size_t bits_to_collect)
{
return this->reseed_with_timeout(bits_to_collect,
BOTAN_RNG_RESEED_DEFAULT_TIMEOUT);
}
size_t RandomNumberGenerator::reseed_with_timeout(size_t bits_to_collect,
std::chrono::milliseconds timeout)
{
return this->reseed_with_sources(Entropy_Sources::global_sources(),
bits_to_collect,
timeout);
}
size_t RandomNumberGenerator::reseed_with_sources(Entropy_Sources& srcs,
size_t poll_bits,
std::chrono::milliseconds poll_timeout)
{
typedef std::chrono::system_clock clock;
auto deadline = clock::now() + poll_timeout;
double bits_collected = 0;
Entropy_Accumulator accum([&](const byte in[], size_t in_len, double entropy_estimate) {
add_entropy(in, in_len);
bits_collected += entropy_estimate;
return (bits_collected >= poll_bits || clock::now() > deadline);
});
srcs.poll(accum);
return bits_collected;
}
Stateful_RNG::Stateful_RNG(size_t bytes_before_reseed) :
m_max_bytes_before_reseed_required(bytes_before_reseed)
{
}
size_t Stateful_RNG::reseed_with_sources(Entropy_Sources& srcs,
size_t poll_bits,
std::chrono::milliseconds poll_timeout)
{
size_t bits_collected = RandomNumberGenerator::reseed_with_sources(srcs, poll_bits, poll_timeout);
if(bits_collected >= poll_bits)
{
m_successful_initialization = true;
m_bytes_since_reseed = 0;
}
return bits_collected;
}
void Stateful_RNG::reseed_check(size_t bytes_requested)
{
const bool fork_detected = (m_last_pid > 0) && (OS::get_process_id() != m_last_pid);
m_bytes_since_reseed += bytes_requested;
m_last_pid = OS::get_process_id();
if(!is_seeded() || fork_detected)
{
this->reseed(BOTAN_RNG_RESEED_POLL_BITS);
}
else if(m_max_bytes_before_reseed_required > 0 &&
m_bytes_since_reseed >= m_max_bytes_before_reseed_required)
{
this->reseed_with_timeout(BOTAN_RNG_AUTO_RESEED_POLL_BITS,
BOTAN_RNG_AUTO_RESEED_TIMEOUT);
}
if(!is_seeded())
{
throw PRNG_Unseeded(name());
}
}
void Stateful_RNG::initialize_with(const byte input[], size_t len)
{
add_entropy(input, len);
m_successful_initialization = true;
}
bool Stateful_RNG::is_seeded() const
{
return m_successful_initialization;
}
RandomNumberGenerator* RandomNumberGenerator::make_rng()
{
return new AutoSeeded_RNG;
}
AutoSeeded_RNG::AutoSeeded_RNG(size_t max_bytes_before_reseed)
{
m_rng.reset(new HMAC_DRBG("SHA-384", max_bytes_before_reseed));
size_t bits = m_rng->reseed(384);
if(!m_rng->is_seeded())
{
throw Exception("AutoSeeded_RNG failed to gather enough entropy only got " +
std::to_string(bits) + " bits");
}
}
void AutoSeeded_RNG::randomize(byte output[], size_t output_len)
{
/*
This data is not secret so skipping a vector/secure_vector allows
avoiding an allocation.
*/
typedef std::chrono::high_resolution_clock clock;
byte nonce_buf[16] = { 0 };
const uint32_t cur_ctr = m_counter++;
const uint32_t cur_pid = OS::get_process_id();
const uint64_t cur_time = clock::now().time_since_epoch().count();
store_le(cur_ctr, nonce_buf);
store_le(cur_pid, nonce_buf + 4);
store_le(cur_time, nonce_buf + 8);
m_rng->randomize_with_input(output, output_len,
nonce_buf, sizeof(nonce_buf));
++m_counter;
}
}
|