1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/*
* XMSS Private Key
* An XMSS: Extended Hash-Based Siganture private key.
* The XMSS private key does not support the X509 and PKCS7 standard. Instead
* the raw format described in [1] is used.
*
* [1] XMSS: Extended Hash-Based Signatures,
* Request for Comments: 8391
* Release: May 2018.
* https://datatracker.ietf.org/doc/rfc8391/
*
* (C) 2016,2017,2018 Matthias Gierlings
* (C) 2019 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
**/
#include <botan/xmss_privatekey.h>
#include <botan/internal/xmss_signature_operation.h>
#if defined(BOTAN_HAS_THREAD_UTILS)
#include <botan/internal/thread_pool.h>
#endif
namespace Botan {
XMSS_PrivateKey::XMSS_PrivateKey(const secure_vector<uint8_t>& raw_key)
: XMSS_PublicKey(unlock(raw_key)),
XMSS_Common_Ops(XMSS_PublicKey::m_xmss_params.oid()),
m_wots_priv_key(m_wots_params.oid(), m_public_seed),
m_index_reg(XMSS_Index_Registry::get_instance())
{
/*
The code requires sizeof(size_t) >= ceil(tree_height / 8)
Maximum supported tree height is 20, ceil(20/8) == 3, so 4 byte
size_t is sufficient for all defined parameters, or even a
(hypothetical) tree height 32, which would be extremely slow to
compute.
*/
static_assert(sizeof(size_t) >= 4, "size_t is big enough to support leaf index");
if(raw_key.size() != XMSS_PrivateKey::size())
{
throw Decoding_Error("Invalid XMSS private key size detected.");
}
// extract & copy unused leaf index from raw_key.
uint64_t unused_leaf = 0;
auto begin = (raw_key.begin() + XMSS_PublicKey::size());
auto end = raw_key.begin() + XMSS_PublicKey::size() + sizeof(uint32_t);
for(auto& i = begin; i != end; i++)
{
unused_leaf = ((unused_leaf << 8) | *i);
}
if(unused_leaf >= (1ull << XMSS_PublicKey::m_xmss_params.tree_height()))
{
throw Decoding_Error("XMSS private key leaf index out of bounds");
}
begin = end;
end = begin + XMSS_PublicKey::m_xmss_params.element_size();
m_prf.clear();
m_prf.reserve(XMSS_PublicKey::m_xmss_params.element_size());
std::copy(begin, end, std::back_inserter(m_prf));
begin = end;
end = begin + m_wots_params.element_size();
m_wots_priv_key.set_private_seed(secure_vector<uint8_t>(begin, end));
set_unused_leaf_index(static_cast<size_t>(unused_leaf));
}
XMSS_PrivateKey::XMSS_PrivateKey(
XMSS_Parameters::xmss_algorithm_t xmss_algo_id,
RandomNumberGenerator& rng)
: XMSS_PublicKey(xmss_algo_id, rng),
XMSS_Common_Ops(xmss_algo_id),
m_wots_priv_key(XMSS_PublicKey::m_xmss_params.ots_oid(),
public_seed(),
rng),
m_prf(rng.random_vec(XMSS_PublicKey::m_xmss_params.element_size())),
m_index_reg(XMSS_Index_Registry::get_instance())
{
XMSS_Address adrs;
set_root(tree_hash(0,
XMSS_PublicKey::m_xmss_params.tree_height(),
adrs));
}
secure_vector<uint8_t>
XMSS_PrivateKey::tree_hash(size_t start_idx,
size_t target_node_height,
XMSS_Address& adrs)
{
BOTAN_ASSERT((start_idx % (1 << target_node_height)) == 0,
"Start index must be divisible by 2^{target node height}.");
#if defined(BOTAN_HAS_THREAD_UTILS)
// dertermine number of parallel tasks to split the tree_hashing into.
Thread_Pool& thread_pool = Thread_Pool::global_instance();
const size_t split_level = std::min(target_node_height, thread_pool.worker_count());
// skip parallelization overhead for leaf nodes.
if(split_level == 0)
{
secure_vector<uint8_t> result;
tree_hash_subtree(result, start_idx, target_node_height, adrs);
return result;
}
const size_t subtrees = static_cast<size_t>(1) << split_level;
const size_t last_idx = (static_cast<size_t>(1) << (target_node_height)) + start_idx;
const size_t offs = (last_idx - start_idx) / subtrees;
uint8_t level = split_level; // current level in the tree
BOTAN_ASSERT((last_idx - start_idx) % subtrees == 0,
"Number of worker threads in tree_hash need to divide range "
"of calculated nodes.");
std::vector<secure_vector<uint8_t>> nodes(
subtrees,
secure_vector<uint8_t>(XMSS_PublicKey::m_xmss_params.element_size()));
std::vector<XMSS_Address> node_addresses(subtrees, adrs);
std::vector<XMSS_Hash> xmss_hash(subtrees, m_hash);
std::vector<std::future<void>> work;
// Calculate multiple subtrees in parallel.
for(size_t i = 0; i < subtrees; i++)
{
using tree_hash_subtree_fn_t =
void (XMSS_PrivateKey::*)(secure_vector<uint8_t>&,
size_t,
size_t,
XMSS_Address&,
XMSS_Hash&);
auto work_fn = static_cast<tree_hash_subtree_fn_t>(&XMSS_PrivateKey::tree_hash_subtree);
work.push_back(thread_pool.run(
work_fn,
this,
std::ref(nodes[i]),
start_idx + i * offs,
target_node_height - split_level,
std::ref(node_addresses[i]),
std::ref(xmss_hash[i])));
}
for(auto& w : work)
{
w.get();
}
work.clear();
// Parallelize the top tree levels horizontally
while(level-- > 1)
{
std::vector<secure_vector<uint8_t>> ro_nodes(
nodes.begin(), nodes.begin() + (1 << (level+1)));
for(size_t i = 0; i < (1U << level); i++)
{
BOTAN_ASSERT_NOMSG(xmss_hash.size() > i);
node_addresses[i].set_tree_height(target_node_height - (level + 1));
node_addresses[i].set_tree_index(
(node_addresses[2 * i + 1].get_tree_index() - 1) >> 1);
using rnd_tree_hash_fn_t =
void (XMSS_PrivateKey::*)(secure_vector<uint8_t>&,
const secure_vector<uint8_t>&,
const secure_vector<uint8_t>&,
XMSS_Address& adrs,
const secure_vector<uint8_t>&,
XMSS_Hash&);
auto work_fn = static_cast<rnd_tree_hash_fn_t>(&XMSS_PrivateKey::randomize_tree_hash);
work.push_back(thread_pool.run(
work_fn,
this,
std::ref(nodes[i]),
std::ref(ro_nodes[2 * i]),
std::ref(ro_nodes[2 * i + 1]),
std::ref(node_addresses[i]),
std::ref(this->public_seed()),
std::ref(xmss_hash[i])));
}
for(auto &w : work)
{
w.get();
}
work.clear();
}
// Avoid creation an extra thread to calculate root node.
node_addresses[0].set_tree_height(target_node_height - 1);
node_addresses[0].set_tree_index(
(node_addresses[1].get_tree_index() - 1) >> 1);
randomize_tree_hash(nodes[0],
nodes[0],
nodes[1],
node_addresses[0],
this->public_seed());
return nodes[0];
#else
secure_vector<uint8_t> result;
tree_hash_subtree(result, start_idx, target_node_height, adrs);
return result;
#endif
}
void
XMSS_PrivateKey::tree_hash_subtree(secure_vector<uint8_t>& result,
size_t start_idx,
size_t target_node_height,
XMSS_Address& adrs,
XMSS_Hash& hash)
{
const secure_vector<uint8_t>& seed = this->public_seed();
std::vector<secure_vector<uint8_t>> nodes(
target_node_height + 1,
secure_vector<uint8_t>(XMSS_PublicKey::m_xmss_params.element_size()));
// node stack, holds all nodes on stack and one extra "pending" node. This
// temporary node referred to as "node" in the XMSS standard document stays
// a pending element, meaning it is not regarded as element on the stack
// until level is increased.
std::vector<uint8_t> node_levels(target_node_height + 1);
uint8_t level = 0; // current level on the node stack.
XMSS_WOTS_PublicKey pk(m_wots_priv_key.wots_parameters().oid(), seed);
const size_t last_idx = (static_cast<size_t>(1) << target_node_height) + start_idx;
for(size_t i = start_idx; i < last_idx; i++)
{
adrs.set_type(XMSS_Address::Type::OTS_Hash_Address);
adrs.set_ots_address(i);
this->wots_private_key().generate_public_key(
pk,
// getWOTS_SK(SK, s + i), reference implementation uses adrs
// instead of zero padded index s + i.
this->wots_private_key().at(adrs, hash),
adrs,
hash);
adrs.set_type(XMSS_Address::Type::LTree_Address);
adrs.set_ltree_address(i);
create_l_tree(nodes[level], pk, adrs, seed, hash);
node_levels[level] = 0;
adrs.set_type(XMSS_Address::Type::Hash_Tree_Address);
adrs.set_tree_height(0);
adrs.set_tree_index(i);
while(level > 0 && node_levels[level] ==
node_levels[level - 1])
{
adrs.set_tree_index(((adrs.get_tree_index() - 1) >> 1));
randomize_tree_hash(nodes[level - 1],
nodes[level - 1],
nodes[level],
adrs,
seed,
hash);
node_levels[level - 1]++;
level--; //Pop stack top element
adrs.set_tree_height(adrs.get_tree_height() + 1);
}
level++; //push temporary node to stack
}
result = nodes[level - 1];
}
std::shared_ptr<Atomic<size_t>>
XMSS_PrivateKey::recover_global_leaf_index() const
{
BOTAN_ASSERT(m_wots_priv_key.private_seed().size() ==
XMSS_PublicKey::m_xmss_params.element_size() &&
m_prf.size() == XMSS_PublicKey::m_xmss_params.element_size(),
"Trying to retrieve index for partially initialized "
"key.");
return m_index_reg.get(m_wots_priv_key.private_seed(),
m_prf);
}
secure_vector<uint8_t> XMSS_PrivateKey::raw_private_key() const
{
std::vector<uint8_t> pk { raw_public_key() };
secure_vector<uint8_t> result(pk.begin(), pk.end());
result.reserve(size());
for(int i = 3; i >= 0; i--)
{
result.push_back(
static_cast<uint8_t>(
static_cast<uint64_t>(unused_leaf_index()) >> 8 * i));
}
std::copy(m_prf.begin(), m_prf.end(), std::back_inserter(result));
std::copy(m_wots_priv_key.private_seed().begin(),
m_wots_priv_key.private_seed().end(),
std::back_inserter(result));
return result;
}
std::unique_ptr<PK_Ops::Signature>
XMSS_PrivateKey::create_signature_op(RandomNumberGenerator&,
const std::string&,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(
new XMSS_Signature_Operation(*this));
throw Provider_Not_Found(algo_name(), provider);
}
}
|