blob: 0eea246d7ea58fe3e406201dec99871a25d94449 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
/*
* Public Key Work Factor Functions
* (C) 1999-2007 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_WORKFACTOR_H_
#define BOTAN_WORKFACTOR_H_
#include <botan/types.h>
namespace Botan {
/**
* Estimate work factor for discrete logarithm
* @param prime_group_size size of the group in bits
* @return estimated security level for this group
*/
BOTAN_PUBLIC_API(2,0) size_t dl_work_factor(size_t prime_group_size);
/**
* Return the appropriate exponent size to use for a particular prime
* group. This is twice the size of the estimated cost of breaking the
* key using an index calculus attack; the assumption is that if an
* arbitrary discrete log on a group of size bits would take about 2^n
* effort, and thus using an exponent of size 2^(2*n) implies that all
* available attacks are about as easy (as e.g Pollard's kangaroo
* algorithm can compute the DL in sqrt(x) operations) while minimizing
* the exponent size for performance reasons.
*/
BOTAN_PUBLIC_API(2,0) size_t dl_exponent_size(size_t prime_group_size);
/**
* Estimate work factor for integer factorization
* @param n_bits size of modulus in bits
* @return estimated security level for this modulus
*/
BOTAN_PUBLIC_API(2,0) size_t if_work_factor(size_t n_bits);
/**
* Estimate work factor for EC discrete logarithm
* @param prime_group_size size of the group in bits
* @return estimated security level for this group
*/
BOTAN_PUBLIC_API(2,0) size_t ecp_work_factor(size_t prime_group_size);
}
#endif
|