1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* Rabin-Williams
* (C) 1999-2008 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/rw.h>
#include <botan/numthry.h>
#include <botan/keypair.h>
#include <botan/parsing.h>
#include <algorithm>
#include <future>
namespace Botan {
/*
* Create a Rabin-Williams private key
*/
RW_PrivateKey::RW_PrivateKey(RandomNumberGenerator& rng,
size_t bits, size_t exp)
{
if(bits < 1024)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
std::to_string(bits) + " bits long");
if(exp < 2 || exp % 2 == 1)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
e = exp;
do
{
p = random_prime(rng, (bits + 1) / 2, e / 2, 3, 4);
q = random_prime(rng, bits - p.bits(), e / 2, ((p % 8 == 3) ? 7 : 3), 8);
n = p * q;
} while(n.bits() != bits);
d = inverse_mod(e, lcm(p - 1, q - 1) >> 1);
d1 = d % (p - 1);
d2 = d % (q - 1);
c = inverse_mod(q, p);
gen_check(rng);
}
/*
* Check Private Rabin-Williams Parameters
*/
bool RW_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(!IF_Scheme_PrivateKey::check_key(rng, strong))
return false;
if(!strong)
return true;
if((e * d) % (lcm(p - 1, q - 1) / 2) != 1)
return false;
return KeyPair::signature_consistency_check(rng, *this, "EMSA2(SHA-1)");
}
RW_Signature_Operation::RW_Signature_Operation(const RW_PrivateKey& rw) :
n(rw.get_n()),
e(rw.get_e()),
q(rw.get_q()),
c(rw.get_c()),
powermod_d1_p(rw.get_d1(), rw.get_p()),
powermod_d2_q(rw.get_d2(), rw.get_q()),
mod_p(rw.get_p())
{
}
secure_vector<byte>
RW_Signature_Operation::sign(const byte msg[], size_t msg_len,
RandomNumberGenerator& rng)
{
rng.add_entropy(msg, msg_len);
if(!blinder.initialized())
{
BigInt k(rng, std::min<size_t>(160, n.bits() - 1));
blinder = Blinder(power_mod(k, e, n), inverse_mod(k, n), n);
}
BigInt i(msg, msg_len);
if(i >= n || i % 16 != 12)
throw Invalid_Argument("Rabin-Williams: invalid input");
if(jacobi(i, n) != 1)
i >>= 1;
i = blinder.blind(i);
auto future_j1 = std::async(std::launch::async, powermod_d1_p, i);
const BigInt j2 = powermod_d2_q(i);
BigInt j1 = future_j1.get();
j1 = mod_p.reduce(sub_mul(j1, j2, c));
const BigInt r = blinder.unblind(mul_add(j1, q, j2));
return BigInt::encode_1363(std::min(r, n - r), n.bytes());
}
secure_vector<byte>
RW_Verification_Operation::verify_mr(const byte msg[], size_t msg_len)
{
BigInt m(msg, msg_len);
if((m > (n >> 1)) || m.is_negative())
throw Invalid_Argument("RW signature verification: m > n / 2 || m < 0");
BigInt r = powermod_e_n(m);
if(r % 16 == 12)
return BigInt::encode_locked(r);
if(r % 8 == 6)
return BigInt::encode_locked(2*r);
r = n - r;
if(r % 16 == 12)
return BigInt::encode_locked(r);
if(r % 8 == 6)
return BigInt::encode_locked(2*r);
throw Invalid_Argument("RW signature verification: Invalid signature");
}
}
|