1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
/*
* RSA
* (C) 1999-2010,2015,2016,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/rsa.h>
#include <botan/internal/pk_ops_impl.h>
#include <botan/keypair.h>
#include <botan/blinding.h>
#include <botan/reducer.h>
#include <botan/workfactor.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/pow_mod.h>
#include <botan/monty.h>
#include <botan/divide.h>
#include <botan/internal/monty_exp.h>
#if defined(BOTAN_HAS_OPENSSL)
#include <botan/internal/openssl.h>
#endif
#if defined(BOTAN_TARGET_OS_HAS_THREADS)
#include <future>
#endif
namespace Botan {
size_t RSA_PublicKey::key_length() const
{
return m_n.bits();
}
size_t RSA_PublicKey::estimated_strength() const
{
return if_work_factor(key_length());
}
AlgorithmIdentifier RSA_PublicKey::algorithm_identifier() const
{
return AlgorithmIdentifier(get_oid(),
AlgorithmIdentifier::USE_NULL_PARAM);
}
std::vector<uint8_t> RSA_PublicKey::public_key_bits() const
{
std::vector<uint8_t> output;
DER_Encoder der(output);
der.start_cons(SEQUENCE)
.encode(m_n)
.encode(m_e)
.end_cons();
return output;
}
RSA_PublicKey::RSA_PublicKey(const AlgorithmIdentifier&,
const std::vector<uint8_t>& key_bits)
{
BER_Decoder(key_bits)
.start_cons(SEQUENCE)
.decode(m_n)
.decode(m_e)
.end_cons();
}
/*
* Check RSA Public Parameters
*/
bool RSA_PublicKey::check_key(RandomNumberGenerator&, bool) const
{
if(m_n < 35 || m_n.is_even() || m_e < 3 || m_e.is_even())
return false;
return true;
}
secure_vector<uint8_t> RSA_PrivateKey::private_key_bits() const
{
return DER_Encoder()
.start_cons(SEQUENCE)
.encode(static_cast<size_t>(0))
.encode(m_n)
.encode(m_e)
.encode(m_d)
.encode(m_p)
.encode(m_q)
.encode(m_d1)
.encode(m_d2)
.encode(m_c)
.end_cons()
.get_contents();
}
RSA_PrivateKey::RSA_PrivateKey(const AlgorithmIdentifier&,
const secure_vector<uint8_t>& key_bits)
{
BER_Decoder(key_bits)
.start_cons(SEQUENCE)
.decode_and_check<size_t>(0, "Unknown PKCS #1 key format version")
.decode(m_n)
.decode(m_e)
.decode(m_d)
.decode(m_p)
.decode(m_q)
.decode(m_d1)
.decode(m_d2)
.decode(m_c)
.end_cons();
}
RSA_PrivateKey::RSA_PrivateKey(const BigInt& prime1,
const BigInt& prime2,
const BigInt& exp,
const BigInt& d_exp,
const BigInt& mod) :
m_d{ d_exp }, m_p{ prime1 }, m_q{ prime2 }, m_d1{}, m_d2{}, m_c{ inverse_mod( m_q, m_p ) }
{
m_n = mod.is_nonzero() ? mod : m_p * m_q;
m_e = exp;
if(m_d == 0)
{
const BigInt phi_n = lcm(m_p - 1, m_q - 1);
m_d = inverse_mod(m_e, phi_n);
}
m_d1 = ct_modulo(m_d, m_p - 1);
m_d2 = ct_modulo(m_d, m_q - 1);
}
/*
* Create a RSA private key
*/
RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng,
size_t bits, size_t exp)
{
if(bits < 1024)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
std::to_string(bits) + " bits long");
if(exp < 3 || exp % 2 == 0)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
m_e = exp;
const size_t p_bits = (bits + 1) / 2;
const size_t q_bits = bits - p_bits;
do
{
m_p = generate_rsa_prime(rng, rng, p_bits, m_e);
m_q = generate_rsa_prime(rng, rng, q_bits, m_e);
m_n = m_p * m_q;
} while(m_n.bits() != bits);
// FIXME: lcm calls gcd which is not const time
const BigInt phi_n = lcm(m_p - 1, m_q - 1);
// FIXME: this uses binary ext gcd because phi_n is even
m_d = inverse_mod(m_e, phi_n);
m_d1 = ct_modulo(m_d, m_p - 1);
m_d2 = ct_modulo(m_d, m_q - 1);
m_c = inverse_mod(m_q, m_p);
}
/*
* Check Private RSA Parameters
*/
bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
{
if(m_n < 35 || m_n.is_even() || m_e < 3 || m_e.is_even())
return false;
if(m_d < 2 || m_p < 3 || m_q < 3 || m_p*m_q != m_n)
return false;
if(m_d1 != ct_modulo(m_d, m_p - 1) || m_d2 != ct_modulo(m_d, m_q - 1) || m_c != inverse_mod(m_q, m_p))
return false;
const size_t prob = (strong) ? 128 : 12;
if(!is_prime(m_p, rng, prob) || !is_prime(m_q, rng, prob))
return false;
if(strong)
{
if(ct_modulo(m_e * m_d, lcm(m_p - 1, m_q - 1)) != 1)
return false;
return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-256)");
}
return true;
}
namespace {
/**
* RSA private (decrypt/sign) operation
*/
class RSA_Private_Operation
{
protected:
size_t get_max_input_bits() const { return (m_mod_bits - 1); }
const size_t exp_blinding_bits = 64;
explicit RSA_Private_Operation(const RSA_PrivateKey& rsa, RandomNumberGenerator& rng) :
m_key(rsa),
m_mod_p(m_key.get_p()),
m_mod_q(m_key.get_q()),
m_monty_p(std::make_shared<Montgomery_Params>(m_key.get_p(), m_mod_p)),
m_monty_q(std::make_shared<Montgomery_Params>(m_key.get_q(), m_mod_q)),
m_powermod_e_n(m_key.get_e(), m_key.get_n()),
m_blinder(m_key.get_n(),
rng,
[this](const BigInt& k) { return m_powermod_e_n(k); },
[this](const BigInt& k) { return inverse_mod(k, m_key.get_n()); }),
m_blinding_bits(64),
m_mod_bytes(m_key.get_n().bytes()),
m_mod_bits(m_key.get_n().bits()),
m_max_d1_bits(m_key.get_p().bits() + m_blinding_bits),
m_max_d2_bits(m_key.get_q().bits() + m_blinding_bits)
{
}
BigInt blinded_private_op(const BigInt& m) const
{
if(m >= m_key.get_n())
throw Invalid_Argument("RSA private op - input is too large");
return m_blinder.unblind(private_op(m_blinder.blind(m)));
}
BigInt private_op(const BigInt& m) const
{
/*
TODO
Consider using Montgomery reduction instead of Barrett, using
the "Smooth RSA-CRT" method. https://eprint.iacr.org/2007/039.pdf
*/
const size_t powm_window = 4;
const BigInt d1_mask(m_blinder.rng(), m_blinding_bits);
#if defined(BOTAN_TARGET_OS_HAS_THREADS) && !defined(BOTAN_HAS_VALGRIND)
#define BOTAN_RSA_USE_ASYNC
#endif
#if defined(BOTAN_RSA_USE_ASYNC)
/*
* Precompute m.sig_words in the main thread before calling async. Otherwise
* the two threads race (during Modular_Reducer::reduce) and while the output
* is correct in both threads, helgrind warns.
*/
m.sig_words();
auto future_j1 = std::async(std::launch::async, [this, &m, &d1_mask, powm_window]() {
#endif
const BigInt masked_d1 = m_key.get_d1() + (d1_mask * (m_key.get_p() - 1));
auto powm_d1_p = monty_precompute(m_monty_p, m_mod_p.reduce(m), powm_window);
BigInt j1 = monty_execute(*powm_d1_p, masked_d1, m_max_d1_bits);
#if defined(BOTAN_RSA_USE_ASYNC)
return j1;
});
#endif
const BigInt d2_mask(m_blinder.rng(), m_blinding_bits);
const BigInt masked_d2 = m_key.get_d2() + (d2_mask * (m_key.get_q() - 1));
auto powm_d2_q = monty_precompute(m_monty_q, m_mod_q.reduce(m), powm_window);
const BigInt j2 = monty_execute(*powm_d2_q, masked_d2, m_max_d2_bits);
#if defined(BOTAN_RSA_USE_ASYNC)
BigInt j1 = future_j1.get();
#endif
/*
* To recover the final value from the CRT representation (j1,j2)
* we use Garner's algorithm:
* c = q^-1 mod p (this is precomputed)
* h = c*(j1-j2) mod p
* m = j2 + h*q
*
* We must avoid leaking if j1 >= j2 or not, as doing so allows deriving
* information about the secret prime. Do this by first adding p to j1,
* which should ensure the subtraction of j2 does not underflow. But
* this may still underflow if p and q are imbalanced in size.
*/
j1 = m_mod_p.multiply(m_mod_p.reduce((m_key.get_p() + j1) - j2), m_key.get_c());
return mul_add(j1, m_key.get_q(), j2);
}
const RSA_PrivateKey& m_key;
// TODO these could all be computed once and stored in the key object
Modular_Reducer m_mod_p;
Modular_Reducer m_mod_q;
std::shared_ptr<const Montgomery_Params> m_monty_p;
std::shared_ptr<const Montgomery_Params> m_monty_q;
Fixed_Exponent_Power_Mod m_powermod_e_n;
Blinder m_blinder;
const size_t m_blinding_bits;
const size_t m_mod_bytes;
const size_t m_mod_bits;
const size_t m_max_d1_bits;
const size_t m_max_d2_bits;
};
class RSA_Signature_Operation final : public PK_Ops::Signature_with_EMSA,
private RSA_Private_Operation
{
public:
size_t max_input_bits() const override { return get_max_input_bits(); }
size_t signature_length() const override { return m_key.get_n().bytes(); }
RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa, RandomNumberGenerator& rng) :
PK_Ops::Signature_with_EMSA(emsa),
RSA_Private_Operation(rsa, rng)
{
}
secure_vector<uint8_t> raw_sign(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator&) override
{
const BigInt m(msg, msg_len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA sign consistency check");
return BigInt::encode_1363(x, m_mod_bytes);
}
};
class RSA_Decryption_Operation final : public PK_Ops::Decryption_with_EME,
private RSA_Private_Operation
{
public:
RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme, RandomNumberGenerator& rng) :
PK_Ops::Decryption_with_EME(eme),
RSA_Private_Operation(rsa, rng)
{
}
size_t plaintext_length(size_t) const override { return m_mod_bytes; }
secure_vector<uint8_t> raw_decrypt(const uint8_t msg[], size_t msg_len) override
{
const BigInt m(msg, msg_len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA decrypt consistency check");
return BigInt::encode_1363(x, m_mod_bytes);
}
};
class RSA_KEM_Decryption_Operation final : public PK_Ops::KEM_Decryption_with_KDF,
private RSA_Private_Operation
{
public:
RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key,
const std::string& kdf,
RandomNumberGenerator& rng) :
PK_Ops::KEM_Decryption_with_KDF(kdf),
RSA_Private_Operation(key, rng)
{}
secure_vector<uint8_t>
raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
{
const BigInt m(encap_key, len);
const BigInt x = blinded_private_op(m);
const BigInt c = m_powermod_e_n(x);
BOTAN_ASSERT(m == c, "RSA KEM consistency check");
return BigInt::encode_1363(x, m_mod_bytes);
}
};
/**
* RSA public (encrypt/verify) operation
*/
class RSA_Public_Operation
{
public:
explicit RSA_Public_Operation(const RSA_PublicKey& rsa) :
m_n(rsa.get_n()),
m_e(rsa.get_e()),
m_monty_n(std::make_shared<Montgomery_Params>(m_n))
{}
size_t get_max_input_bits() const
{
const size_t n_bits = m_n.bits();
BOTAN_ASSERT_NOMSG(n_bits >= 384);
return n_bits - 1;
}
protected:
BigInt public_op(const BigInt& m) const
{
if(m >= m_n)
throw Invalid_Argument("RSA public op - input is too large");
const size_t powm_window = 1;
auto powm_m_n = monty_precompute(m_monty_n, m, powm_window, false);
return monty_execute_vartime(*powm_m_n, m_e);
}
const BigInt& get_n() const { return m_n; }
const BigInt& m_n;
const BigInt& m_e;
std::shared_ptr<Montgomery_Params> m_monty_n;
};
class RSA_Encryption_Operation final : public PK_Ops::Encryption_with_EME,
private RSA_Public_Operation
{
public:
RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) :
PK_Ops::Encryption_with_EME(eme),
RSA_Public_Operation(rsa)
{
}
size_t ciphertext_length(size_t) const override { return m_n.bytes(); }
size_t max_raw_input_bits() const override { return get_max_input_bits(); }
secure_vector<uint8_t> raw_encrypt(const uint8_t msg[], size_t msg_len,
RandomNumberGenerator&) override
{
BigInt m(msg, msg_len);
return BigInt::encode_1363(public_op(m), m_n.bytes());
}
};
class RSA_Verify_Operation final : public PK_Ops::Verification_with_EMSA,
private RSA_Public_Operation
{
public:
size_t max_input_bits() const override { return get_max_input_bits(); }
RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
PK_Ops::Verification_with_EMSA(emsa),
RSA_Public_Operation(rsa)
{
}
bool with_recovery() const override { return true; }
secure_vector<uint8_t> verify_mr(const uint8_t msg[], size_t msg_len) override
{
BigInt m(msg, msg_len);
return BigInt::encode_locked(public_op(m));
}
};
class RSA_KEM_Encryption_Operation final : public PK_Ops::KEM_Encryption_with_KDF,
private RSA_Public_Operation
{
public:
RSA_KEM_Encryption_Operation(const RSA_PublicKey& key,
const std::string& kdf) :
PK_Ops::KEM_Encryption_with_KDF(kdf),
RSA_Public_Operation(key) {}
private:
void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& raw_shared_key,
Botan::RandomNumberGenerator& rng) override
{
const BigInt r = BigInt::random_integer(rng, 1, get_n());
const BigInt c = public_op(r);
out_encapsulated_key = BigInt::encode_locked(c);
raw_shared_key = BigInt::encode_locked(r);
}
};
}
std::unique_ptr<PK_Ops::Encryption>
RSA_PublicKey::create_encryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
#if defined(BOTAN_HAS_OPENSSL)
if(provider == "openssl" || provider.empty())
{
try
{
return make_openssl_rsa_enc_op(*this, params);
}
catch(Exception& e)
{
/*
* If OpenSSL for some reason could not handle this (eg due to OAEP params),
* throw if openssl was specifically requested but otherwise just fall back
* to the normal version.
*/
if(provider == "openssl")
throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
}
}
#endif
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Encryption>(new RSA_Encryption_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::KEM_Encryption>
RSA_PublicKey::create_kem_encryption_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::KEM_Encryption>(new RSA_KEM_Encryption_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Verification>
RSA_PublicKey::create_verification_op(const std::string& params,
const std::string& provider) const
{
#if defined(BOTAN_HAS_OPENSSL)
if(provider == "openssl" || provider.empty())
{
std::unique_ptr<PK_Ops::Verification> res = make_openssl_rsa_ver_op(*this, params);
if(res)
return res;
}
#endif
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Verification>(new RSA_Verify_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Decryption>
RSA_PrivateKey::create_decryption_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& provider) const
{
#if defined(BOTAN_HAS_OPENSSL)
if(provider == "openssl" || provider.empty())
{
try
{
return make_openssl_rsa_dec_op(*this, params);
}
catch(Exception& e)
{
if(provider == "openssl")
throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
}
}
#endif
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Decryption>(new RSA_Decryption_Operation(*this, params, rng));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::KEM_Decryption>
RSA_PrivateKey::create_kem_decryption_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& provider) const
{
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::KEM_Decryption>(new RSA_KEM_Decryption_Operation(*this, params, rng));
throw Provider_Not_Found(algo_name(), provider);
}
std::unique_ptr<PK_Ops::Signature>
RSA_PrivateKey::create_signature_op(RandomNumberGenerator& rng,
const std::string& params,
const std::string& provider) const
{
#if defined(BOTAN_HAS_OPENSSL)
if(provider == "openssl" || provider.empty())
{
std::unique_ptr<PK_Ops::Signature> res = make_openssl_rsa_sig_op(*this, params);
if(res)
return res;
}
#endif
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(new RSA_Signature_Operation(*this, params, rng));
throw Provider_Not_Found(algo_name(), provider);
}
}
|