aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/pubkey/pubkey.h
blob: 26cbb17901c95e409a92126332638da349d11b1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
* Public Key Interface
* (C) 1999-2010 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_PUBKEY_H__
#define BOTAN_PUBKEY_H__

#include <botan/pk_keys.h>
#include <botan/pk_ops.h>
#include <botan/symkey.h>
#include <botan/rng.h>
#include <botan/eme.h>
#include <botan/emsa.h>
#include <botan/kdf.h>

namespace Botan {

/**
* The two types of signature format supported by Botan.
*/
enum Signature_Format { IEEE_1363, DER_SEQUENCE };

/**
* Public Key Encryptor
*/
class BOTAN_DLL PK_Encryptor
   {
   public:

      /**
      * Encrypt a message.
      * @param in the message as a byte array
      * @param length the length of the above byte array
      * @param rng the random number source to use
      * @return encrypted message
      */
      std::vector<byte> encrypt(const byte in[], size_t length,
                                 RandomNumberGenerator& rng) const
         {
         return enc(in, length, rng);
         }

      /**
      * Encrypt a message.
      * @param in the message
      * @param rng the random number source to use
      * @return encrypted message
      */
      template<typename Alloc>
      std::vector<byte> encrypt(const std::vector<byte, Alloc>& in,
                                RandomNumberGenerator& rng) const
         {
         return enc(in.data(), in.size(), rng);
         }

      /**
      * Return the maximum allowed message size in bytes.
      * @return maximum message size in bytes
      */
      virtual size_t maximum_input_size() const = 0;

      PK_Encryptor() {}
      virtual ~PK_Encryptor() {}

      PK_Encryptor(const PK_Encryptor&) = delete;

      PK_Encryptor& operator=(const PK_Encryptor&) = delete;

   private:
      virtual std::vector<byte> enc(const byte[], size_t,
                                    RandomNumberGenerator&) const = 0;
   };

/**
* Public Key Decryptor
*/
class BOTAN_DLL PK_Decryptor
   {
   public:
      /**
      * Decrypt a ciphertext, throwing an exception if the input
      * seems to be invalid (eg due to an accidental or malicious
      * error in the ciphertext).
      *
      * @param in the ciphertext as a byte array
      * @param length the length of the above byte array
      * @return decrypted message
      */
      secure_vector<byte> decrypt(const byte in[], size_t length) const;

      /**
      * Same as above, but taking a vector
      * @param in the ciphertext
      * @return decrypted message
      */
      template<typename Alloc>
      secure_vector<byte> decrypt(const std::vector<byte, Alloc>& in) const
         {
         return decrypt(in.data(), in.size());
         }

      /**
      * Decrypt a ciphertext. If the ciphertext is invalid (eg due to
      * invalid padding) or is not the expected length, instead
      * returns a random string of the expected length. Use to avoid
      * oracle attacks, especially against PKCS #1 v1.5 decryption.
      */
      secure_vector<byte>
      decrypt_or_random(const byte in[],
                        size_t length,
                        size_t expected_pt_len,
                        RandomNumberGenerator& rng) const;

      /**
      * Decrypt a ciphertext. If the ciphertext is invalid (eg due to
      * invalid padding) or is not the expected length, instead
      * returns a random string of the expected length. Use to avoid
      * oracle attacks, especially against PKCS #1 v1.5 decryption.
      *
      * Additionally checks (also in const time) that:
      *    contents[required_content_offsets[i]] == required_content_bytes[i]
      * for 0 <= i < required_contents
      *
      * Used for example in TLS, which encodes the client version in
      * the content bytes: if there is any timing variation the version
      * check can be used as an oracle to recover the key.
      */
      secure_vector<byte>
      decrypt_or_random(const byte in[],
                        size_t length,
                        size_t expected_pt_len,
                        RandomNumberGenerator& rng,
                        const byte required_content_bytes[],
                        const byte required_content_offsets[],
                        size_t required_contents) const;

      PK_Decryptor() {}
      virtual ~PK_Decryptor() = default;

      PK_Decryptor(const PK_Decryptor&) = delete;
      PK_Decryptor& operator=(const PK_Decryptor&) = delete;

   private:
      virtual secure_vector<byte> do_decrypt(byte& valid_mask,
                                             const byte in[], size_t in_len) const = 0;
   };

/**
* Public Key Signer. Use the sign_message() functions for small
* messages. Use multiple calls update() to process large messages and
* generate the signature by finally calling signature().
*/
class BOTAN_DLL PK_Signer
   {
   public:

      /**
      * Construct a PK Signer.
      * @param key the key to use inside this signer
      * @param emsa the EMSA to use
      * An example would be "EMSA1(SHA-224)".
      * @param format the signature format to use
      */
      PK_Signer(const Private_Key& key,
                const std::string& emsa,
                Signature_Format format = IEEE_1363,
                const std::string& provider = "");

      /**
      * Sign a message all in one go
      * @param in the message to sign as a byte array
      * @param length the length of the above byte array
      * @param rng the rng to use
      * @return signature
      */
      std::vector<byte> sign_message(const byte in[], size_t length,
                                     RandomNumberGenerator& rng)
         {
         this->update(in, length);
         return this->signature(rng);
         }

      /**
      * Sign a message.
      * @param in the message to sign
      * @param rng the rng to use
      * @return signature
      */
      std::vector<byte> sign_message(const std::vector<byte>& in,
                                     RandomNumberGenerator& rng)
         { return sign_message(in.data(), in.size(), rng); }

      std::vector<byte> sign_message(const secure_vector<byte>& in,
                                     RandomNumberGenerator& rng)
         { return sign_message(in.data(), in.size(), rng); }

      /**
      * Add a message part (single byte).
      * @param in the byte to add
      */
      void update(byte in) { update(&in, 1); }

      /**
      * Add a message part.
      * @param in the message part to add as a byte array
      * @param length the length of the above byte array
      */
      void update(const byte in[], size_t length);

      /**
      * Add a message part.
      * @param in the message part to add
      */
      void update(const std::vector<byte>& in) { update(in.data(), in.size()); }

      /**
      * Add a message part.
      * @param in the message part to add
      */
      void update(const std::string& in)
         {
         update(reinterpret_cast<const byte*>(in.data()), in.size());
         }

      /**
      * Get the signature of the so far processed message (provided by the
      * calls to update()).
      * @param rng the rng to use
      * @return signature of the total message
      */
      std::vector<byte> signature(RandomNumberGenerator& rng);

      /**
      * Set the output format of the signature.
      * @param format the signature format to use
      */
      void set_output_format(Signature_Format format) { m_sig_format = format; }
   private:
      std::unique_ptr<PK_Ops::Signature> m_op;
      Signature_Format m_sig_format;
   };

/**
* Public Key Verifier. Use the verify_message() functions for small
* messages. Use multiple calls update() to process large messages and
* verify the signature by finally calling check_signature().
*/
class BOTAN_DLL PK_Verifier
   {
   public:
      /**
      * Construct a PK Verifier.
      * @param pub_key the public key to verify against
      * @param emsa the EMSA to use (eg "EMSA3(SHA-1)")
      * @param format the signature format to use
      */
      PK_Verifier(const Public_Key& pub_key,
                  const std::string& emsa,
                  Signature_Format format = IEEE_1363,
                  const std::string& provider = "");

      /**
      * Verify a signature.
      * @param msg the message that the signature belongs to, as a byte array
      * @param msg_length the length of the above byte array msg
      * @param sig the signature as a byte array
      * @param sig_length the length of the above byte array sig
      * @return true if the signature is valid
      */
      bool verify_message(const byte msg[], size_t msg_length,
                          const byte sig[], size_t sig_length);
      /**
      * Verify a signature.
      * @param msg the message that the signature belongs to
      * @param sig the signature
      * @return true if the signature is valid
      */
      template<typename Alloc, typename Alloc2>
      bool verify_message(const std::vector<byte, Alloc>& msg,
                          const std::vector<byte, Alloc2>& sig)
         {
         return verify_message(msg.data(), msg.size(),
                               sig.data(), sig.size());
         }

      /**
      * Add a message part (single byte) of the message corresponding to the
      * signature to be verified.
      * @param in the byte to add
      */
      void update(byte in) { update(&in, 1); }

      /**
      * Add a message part of the message corresponding to the
      * signature to be verified.
      * @param msg_part the new message part as a byte array
      * @param length the length of the above byte array
      */
      void update(const byte msg_part[], size_t length);

      /**
      * Add a message part of the message corresponding to the
      * signature to be verified.
      * @param in the new message part
      */
      void update(const std::vector<byte>& in)
         { update(in.data(), in.size()); }

      /**
      * Add a message part of the message corresponding to the
      * signature to be verified.
      */
      void update(const std::string& in)
         {
         update(reinterpret_cast<const byte*>(in.data()), in.size());
         }

      /**
      * Check the signature of the buffered message, i.e. the one build
      * by successive calls to update.
      * @param sig the signature to be verified as a byte array
      * @param length the length of the above byte array
      * @return true if the signature is valid, false otherwise
      */
      bool check_signature(const byte sig[], size_t length);

      /**
      * Check the signature of the buffered message, i.e. the one build
      * by successive calls to update.
      * @param sig the signature to be verified
      * @return true if the signature is valid, false otherwise
      */
      template<typename Alloc>
      bool check_signature(const std::vector<byte, Alloc>& sig)
         {
         return check_signature(sig.data(), sig.size());
         }

      /**
      * Set the format of the signatures fed to this verifier.
      * @param format the signature format to use
      */
      void set_input_format(Signature_Format format);

   private:
      std::unique_ptr<PK_Ops::Verification> m_op;
      Signature_Format m_sig_format;
   };

/**
* Key used for key agreement
*/
class BOTAN_DLL PK_Key_Agreement
   {
   public:

      /**
      * Construct a PK Key Agreement.
      * @param key the key to use
      * @param kdf name of the KDF to use (or 'Raw' for no KDF)
      * @param provider the algo provider to use (or empty for default)
      */
      PK_Key_Agreement(const Private_Key& key,
                       const std::string& kdf,
                       const std::string& provider = "");

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      * @param params_len the length of params in bytes
      */
      SymmetricKey derive_key(size_t key_len,
                              const byte in[],
                              size_t in_len,
                              const byte params[],
                              size_t params_len) const;

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      * @param params_len the length of params in bytes
      */
      SymmetricKey derive_key(size_t key_len,
                              const std::vector<byte>& in,
                              const byte params[],
                              size_t params_len) const
         {
         return derive_key(key_len, in.data(), in.size(),
                           params, params_len);
         }

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      */
      SymmetricKey derive_key(size_t key_len,
                              const byte in[], size_t in_len,
                              const std::string& params = "") const
         {
         return derive_key(key_len, in, in_len,
                           reinterpret_cast<const byte*>(params.data()),
                           params.length());
         }

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param params extra derivation params
      */
      SymmetricKey derive_key(size_t key_len,
                              const std::vector<byte>& in,
                              const std::string& params = "") const
         {
         return derive_key(key_len, in.data(), in.size(),
                           reinterpret_cast<const byte*>(params.data()),
                           params.length());
         }

   private:
      std::unique_ptr<PK_Ops::Key_Agreement> m_op;
   };

/**
* Encryption using a standard message recovery algorithm like RSA or
* ElGamal, paired with an encoding scheme like OAEP.
*/
class BOTAN_DLL PK_Encryptor_EME : public PK_Encryptor
   {
   public:
      size_t maximum_input_size() const override;

      /**
      * Construct an instance.
      * @param key the key to use inside the decryptor
      * @param padding the message encoding scheme to use (eg "OAEP(SHA-256)")
      */
      PK_Encryptor_EME(const Public_Key& key,
                       const std::string& padding,
                       const std::string& provider = "");
   private:
      std::vector<byte> enc(const byte[], size_t,
                             RandomNumberGenerator& rng) const override;

      std::unique_ptr<PK_Ops::Encryption> m_op;
   };

/**
* Decryption with an MR algorithm and an EME.
*/
class BOTAN_DLL PK_Decryptor_EME : public PK_Decryptor
   {
   public:
     /**
      * Construct an instance.
      * @param key the key to use inside the encryptor
      * @param eme the EME to use
      */
      PK_Decryptor_EME(const Private_Key& key,
                       const std::string& eme,
                       const std::string& provider = "");
   private:
      secure_vector<byte> do_decrypt(byte& valid_mask,
                                     const byte in[],
                                     size_t in_len) const override;

      std::unique_ptr<PK_Ops::Decryption> m_op;
   };

class BOTAN_DLL PK_KEM_Encryptor
   {
   public:
      PK_KEM_Encryptor(const Public_Key& key,
                       const std::string& kem_param = "",
                       const std::string& provider = "");

      void encrypt(secure_vector<byte>& out_encapsulated_key,
                   secure_vector<byte>& out_shared_key,
                   size_t desired_shared_key_len,
                   Botan::RandomNumberGenerator& rng,
                   const uint8_t salt[],
                   size_t salt_len);

      template<typename Alloc>
         void encrypt(secure_vector<byte>& out_encapsulated_key,
                      secure_vector<byte>& out_shared_key,
                      size_t desired_shared_key_len,
                      Botan::RandomNumberGenerator& rng,
                      const std::vector<uint8_t, Alloc>& salt)
         {
         this->encrypt(out_encapsulated_key,
                       out_shared_key,
                       desired_shared_key_len,
                       rng,
                       salt.data(), salt.size());
         }

      void encrypt(secure_vector<byte>& out_encapsulated_key,
                   secure_vector<byte>& out_shared_key,
                   size_t desired_shared_key_len,
                   Botan::RandomNumberGenerator& rng)
         {
         this->encrypt(out_encapsulated_key,
                       out_shared_key,
                       desired_shared_key_len,
                       rng,
                       nullptr,
                       0);
         }

   private:
      std::unique_ptr<PK_Ops::KEM_Encryption> m_op;
   };

class BOTAN_DLL PK_KEM_Decryptor
   {
   public:
      PK_KEM_Decryptor(const Private_Key& key,
                       const std::string& kem_param = "",
                       const std::string& provider = "");

      secure_vector<byte> decrypt(const byte encap_key[],
                                  size_t encap_key_len,
                                  size_t desired_shared_key_len,
                                  const uint8_t salt[],
                                  size_t salt_len);

      secure_vector<byte> decrypt(const byte encap_key[],
                                  size_t encap_key_len,
                                  size_t desired_shared_key_len)
         {
         return this->decrypt(encap_key, encap_key_len,
                              desired_shared_key_len,
                              nullptr, 0);
         }

      template<typename Alloc1, typename Alloc2>
         secure_vector<byte> decrypt(const std::vector<byte, Alloc1>& encap_key,
                                     size_t desired_shared_key_len,
                                     const std::vector<byte, Alloc2>& salt)
         {
         return this->decrypt(encap_key.data(), encap_key.size(),
                              desired_shared_key_len,
                              salt.data(), salt.size());
         }

   private:
      std::unique_ptr<PK_Ops::KEM_Decryption> m_op;
   };

}

#endif