1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/*
* (C) 1999-2010,2015 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pubkey.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/bigint.h>
#include <botan/pk_ops.h>
#include <botan/internal/ct_utils.h>
#include <botan/rng.h>
namespace Botan {
secure_vector<uint8_t> PK_Decryptor::decrypt(const uint8_t in[], size_t length) const
{
uint8_t valid_mask = 0;
secure_vector<uint8_t> decoded = do_decrypt(valid_mask, in, length);
if(valid_mask == 0)
throw Decoding_Error("Invalid public key ciphertext, cannot decrypt");
return decoded;
}
secure_vector<uint8_t>
PK_Decryptor::decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng,
const uint8_t required_content_bytes[],
const uint8_t required_content_offsets[],
size_t required_contents_length) const
{
const secure_vector<uint8_t> fake_pms = rng.random_vec(expected_pt_len);
uint8_t valid_mask = 0;
secure_vector<uint8_t> decoded = do_decrypt(valid_mask, in, length);
valid_mask &= CT::is_equal(decoded.size(), expected_pt_len);
decoded.resize(expected_pt_len);
for(size_t i = 0; i != required_contents_length; ++i)
{
/*
These values are chosen by the application and for TLS are constants,
so this early failure via assert is fine since we know 0,1 < 48
If there is a protocol that has content checks on the key where
the expected offsets are controllable by the attacker this could
still leak.
Alternately could always reduce the offset modulo the length?
*/
const uint8_t exp = required_content_bytes[i];
const uint8_t off = required_content_offsets[i];
BOTAN_ASSERT(off < expected_pt_len, "Offset in range of plaintext");
valid_mask &= CT::is_equal(decoded[off], exp);
}
CT::conditional_copy_mem(valid_mask,
/*output*/decoded.data(),
/*from0*/decoded.data(),
/*from1*/fake_pms.data(),
expected_pt_len);
return decoded;
}
secure_vector<uint8_t>
PK_Decryptor::decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng) const
{
return decrypt_or_random(in, length, expected_pt_len, rng,
nullptr, nullptr, 0);
}
PK_Encryptor_EME::PK_Encryptor_EME(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& padding,
const std::string& provider)
{
m_op = key.create_encryption_op(rng, padding, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support encryption");
}
PK_Encryptor_EME::~PK_Encryptor_EME() { /* for unique_ptr */ }
std::vector<uint8_t>
PK_Encryptor_EME::enc(const uint8_t in[], size_t length, RandomNumberGenerator& rng) const
{
return unlock(m_op->encrypt(in, length, rng));
}
size_t PK_Encryptor_EME::maximum_input_size() const
{
return m_op->max_input_bits() / 8;
}
PK_Decryptor_EME::PK_Decryptor_EME(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& padding,
const std::string& provider)
{
m_op = key.create_decryption_op(rng, padding, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support decryption");
}
PK_Decryptor_EME::~PK_Decryptor_EME() { /* for unique_ptr */ }
secure_vector<uint8_t> PK_Decryptor_EME::do_decrypt(uint8_t& valid_mask,
const uint8_t in[], size_t in_len) const
{
return m_op->decrypt(valid_mask, in, in_len);
}
PK_KEM_Encryptor::PK_KEM_Encryptor(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& param,
const std::string& provider)
{
m_op = key.create_kem_encryption_op(rng, param, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM encryption");
}
PK_KEM_Encryptor::~PK_KEM_Encryptor() { /* for unique_ptr */ }
void PK_KEM_Encryptor::encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const uint8_t salt[],
size_t salt_len)
{
m_op->kem_encrypt(out_encapsulated_key,
out_shared_key,
desired_shared_key_len,
rng,
salt,
salt_len);
}
PK_KEM_Decryptor::PK_KEM_Decryptor(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& param,
const std::string& provider)
{
m_op = key.create_kem_decryption_op(rng, param, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM decryption");
}
PK_KEM_Decryptor::~PK_KEM_Decryptor() { /* for unique_ptr */ }
secure_vector<uint8_t> PK_KEM_Decryptor::decrypt(const uint8_t encap_key[],
size_t encap_key_len,
size_t desired_shared_key_len,
const uint8_t salt[],
size_t salt_len)
{
return m_op->kem_decrypt(encap_key, encap_key_len,
desired_shared_key_len,
salt, salt_len);
}
PK_Key_Agreement::PK_Key_Agreement(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& kdf,
const std::string& provider)
{
m_op = key.create_key_agreement_op(rng, kdf, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support key agreement");
}
PK_Key_Agreement::~PK_Key_Agreement() { /* for unique_ptr */ }
PK_Key_Agreement& PK_Key_Agreement::operator=(PK_Key_Agreement&& other)
{
if(this != &other)
{
m_op = std::move(other.m_op);
}
return (*this);
}
PK_Key_Agreement::PK_Key_Agreement(PK_Key_Agreement&& other) :
m_op(std::move(other.m_op))
{}
SymmetricKey PK_Key_Agreement::derive_key(size_t key_len,
const uint8_t in[], size_t in_len,
const uint8_t salt[],
size_t salt_len) const
{
return m_op->agree(key_len, in, in_len, salt, salt_len);
}
PK_Signer::PK_Signer(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& emsa,
Signature_Format format,
const std::string& provider)
{
m_op = key.create_signature_op(rng, emsa, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature generation");
m_sig_format = format;
m_parts = key.message_parts();
m_part_size = key.message_part_size();
}
PK_Signer::~PK_Signer() { /* for unique_ptr */ }
void PK_Signer::update(const uint8_t in[], size_t length)
{
m_op->update(in, length);
}
std::vector<uint8_t> PK_Signer::signature(RandomNumberGenerator& rng)
{
const std::vector<uint8_t> sig = unlock(m_op->sign(rng));
if(m_sig_format == IEEE_1363)
{
return sig;
}
else if(m_sig_format == DER_SEQUENCE)
{
if(sig.size() % m_parts != 0 || sig.size() != m_parts * m_part_size)
throw Internal_Error("PK_Signer: DER signature sizes unexpected, cannot encode");
std::vector<BigInt> sig_parts(m_parts);
for(size_t i = 0; i != sig_parts.size(); ++i)
sig_parts[i].binary_decode(&sig[m_part_size*i], m_part_size);
std::vector<uint8_t> output;
DER_Encoder(output)
.start_cons(SEQUENCE)
.encode_list(sig_parts)
.end_cons();
return output;
}
else
throw Internal_Error("PK_Signer: Invalid signature format enum");
}
PK_Verifier::PK_Verifier(const Public_Key& key,
const std::string& emsa,
Signature_Format format,
const std::string& provider)
{
m_op = key.create_verification_op(emsa, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature verification");
m_sig_format = format;
m_parts = key.message_parts();
m_part_size = key.message_part_size();
}
PK_Verifier::~PK_Verifier() { /* for unique_ptr */ }
void PK_Verifier::set_input_format(Signature_Format format)
{
if(format != IEEE_1363 && m_parts == 1)
throw Invalid_Argument("PK_Verifier: This algorithm does not support DER encoding");
m_sig_format = format;
}
bool PK_Verifier::verify_message(const uint8_t msg[], size_t msg_length,
const uint8_t sig[], size_t sig_length)
{
update(msg, msg_length);
return check_signature(sig, sig_length);
}
void PK_Verifier::update(const uint8_t in[], size_t length)
{
m_op->update(in, length);
}
bool PK_Verifier::check_signature(const uint8_t sig[], size_t length)
{
try {
if(m_sig_format == IEEE_1363)
{
return m_op->is_valid_signature(sig, length);
}
else if(m_sig_format == DER_SEQUENCE)
{
std::vector<uint8_t> real_sig;
BER_Decoder decoder(sig, length);
BER_Decoder ber_sig = decoder.start_cons(SEQUENCE);
size_t count = 0;
while(ber_sig.more_items())
{
BigInt sig_part;
ber_sig.decode(sig_part);
real_sig += BigInt::encode_1363(sig_part, m_part_size);
++count;
}
if(count != m_parts)
throw Decoding_Error("PK_Verifier: signature size invalid");
return m_op->is_valid_signature(real_sig.data(), real_sig.size());
}
else
throw Internal_Error("PK_Verifier: Invalid signature format enum");
}
catch(Invalid_Argument&) { return false; }
}
}
|